ESF:BPM_STA2 Statistics 2 - Course Information
BPM_STA2 Statistics 2
Faculty of Economics and AdministrationSpring 2021
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. Mgr. Maria Králová, Ph.D. (lecturer)
Mgr. Jan Böhm (seminar tutor)
Ing. Matouš Cabalka (seminar tutor)
Mgr. Terézia Černá (seminar tutor)
Lenka Hráčková (seminar tutor)
Mgr. Bc. Martin Chvátal, Ph.D. (seminar tutor)
doc. Mgr. Maria Králová, Ph.D. (seminar tutor)
Ing. Mgr. Markéta Matulová, Ph.D. (seminar tutor)
Mgr. Petra Ráboňová, Ph.D. (seminar tutor)
Ing. Mgr. Vlastimil Reichel, Ph.D. (seminar tutor)
Ing. Jana Vechetová (seminar tutor)
Mgr. Lenka Zavadilová, Ph.D. (seminar tutor) - Guaranteed by
- doc. Mgr. Maria Králová, Ph.D.
Department of Applied Mathematics and Computer Science – Faculty of Economics and Administration
Contact Person: Lenka Hráčková
Supplier department: Department of Applied Mathematics and Computer Science – Faculty of Economics and Administration - Timetable
- Tue 12:00–13:50 P101
- Timetable of Seminar Groups:
BPM_STA2/02: Wed 8:00–9:50 VT204, T. Černá
BPM_STA2/03: Thu 10:00–11:50 VT206, J. Böhm
BPM_STA2/04: Thu 12:00–13:50 VT206, M. Matulová
BPM_STA2/05: Thu 8:00–9:50 VT105, T. Černá
BPM_STA2/06: Tue 14:00–15:50 VT204, J. Böhm
BPM_STA2/07: Thu 8:00–9:50 VT206, M. Matulová
BPM_STA2/08: Tue 18:00–19:50 VT206, J. Böhm
BPM_STA2/09: Thu 12:00–13:50 VT204, M. Chvátal
BPM_STA2/10: Thu 14:00–15:50 VT204, M. Chvátal
BPM_STA2/11: Wed 10:00–11:50 VT202
BPM_STA2/12: Tue 16:00–17:50 VT204, J. Böhm
BPM_STA2/13: Thu 10:00–11:50 VT105, T. Černá
BPM_STA2/14: Thu 16:00–17:50 VT206, M. Chvátal
BPM_STA2/15: Wed 8:00–9:50 VT105, M. Chvátal
BPM_STA2/16: Wed 10:00–11:50 VT204, T. Černá
BPM_STA2/17: Wed 12:00–13:50 VT202, V. Reichel
BPM_STA2/18: Wed 14:00–15:50 VT202, V. Reichel
BPM_STA2/19: Tue 14:00–15:50 VT105
BPM_STA2/20: Tue 18:00–19:50 VT105 - Prerequisites
- ( BPM_STA1 Statistics 1 )
The basic terms in calculus of probability. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Economic Information Systems (programme ESF, B-SI)
- Economics (programme ESF, M-EKT)
- Finance (programme ESF, B-FIN)
- Finance (programme ESF, B-FU)
- Finance (programme ESF, M-FU)
- Economic Policy (programme ESF, B-HOSP)
- Economic Policy (programme ESF, B-HPS)
- Economic Policy (programme ESF, M-HPS)
- Business Management (programme ESF, B-EKM)
- Business Management (programme ESF, B-PEM)
- Business Management (programme ESF, M-EKM)
- Business Informatics (programme ESF, B-POIN)
- Business Informatics (programme ESF, B-SI)
- Regional Development and Tourism (programme ESF, B-HPS)
- Regional Development and Tourism (programme ESF, B-RRCR)
- Regional Development and Administration (programme ESF, B-HPS)
- Regional Development and Administration (programme ESF, B-HPS, specialization Reg. Develop. & Admin.)
- Regional Development and Administration (programme ESF, B-HPS, specialization Reg. Develop. & Admin.)
- Regional Development and Administration (programme ESF, M-HPS)
- Public Economics and Administration (programme ESF, B-HPS)
- Public Economics and Administration (programme ESF, B-VES)
- Public Economics and Administration (programme ESF, M-HPS)
- Course objectives
- At the end of the course students should be able to:
- understand and explain the basics of statistical inference;
- use the basic testing procedures;
- operate the statistical software. - Learning outcomes
- After graduation of the course student should be able to:
- distinguish between sample and population and properly interpret principles of inferential statistics
- determine statistical methods appropriate for particular application context
- solve tasks based on real data by means of sw. STATSTICA
- interpret properly outputs of analyses - Syllabus
- - Normal as well as derived exact distributions (Pearson distribution, Student distribution, F distribution) and their properties; quantile tables.
- - Law of large numbers, central limit theorem.
- - Basic concepts of mathematical statistics; inductive statistics, random sampling, sample statistic.
- - Point estimation and interval estimation of population parameters and parametric functions.
- - Introduction to hypotheses testing.
- - The statistical inferences based on a single sample from normal distribution.
- - The statistical inferences based on two independent samples from the normal distribution.
- - The statistical inferences based on one sample or two independent samples from Bernoulli (zero-one) distribution.
- - One-way analysis of variance.
- - Simple linear regression.
- - Introduction to correlation analysis.
- - The relationship between two variables on the nominal or ordinal scale
- - Nonparametric tests on medians
- Literature
- required literature
- BUDÍKOVÁ, Marie, Maria KRÁLOVÁ and Bohumil MAROŠ. Průvodce základními statistickými metodami (Guide to basic statistical methods). vydání první. Praha: Grada Publishing, a.s., 2010, 272 pp. edice Expert. ISBN 978-80-247-3243-5. URL info
- not specified
- WEISS, N. A. Introductory statistics. Edited by Carol A. Weiss. 10th edition, global edition. Boston: Pearson, 2017, 763, 73. ISBN 9781292099729. info
- Teaching methods
- Theoretical lectures; computer seminar sessions.
- Assessment methods
- The final grade is given by the score of the final test.
The requirements for taking the test are:
to be active at seminar sessions which are compulsory and to pass 2 Ropots.
Any copying, recording or leaking tests, use of unauthorized tools, aids and communication devices, or other disruptions of objectivity of exams (credit tests) will be considered non-compliance with the conditions for course completion as well as a severe violation of the study rules. Consequently, the teacher will finish the exam (credit test) by awarding grade "F" in the Information System, and the Dean will initiate disciplinary proceedings that may result in study termination. - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
General note: Přednášky jsou dostupné online a ze záznamu.
Information on course enrolment limitations: max. 30 cizích studentů; cvičení pouze pro studenty ESF - Listed among pre-requisites of other courses
- Enrolment Statistics (Spring 2021, recent)
- Permalink: https://is.muni.cz/course/econ/spring2021/BPM_STA2