BPM_STA2 Statistics 2

Faculty of Economics and Administration
Spring 2022
Extent and Intensity
2/2/0. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. Mgr. Maria Králová, Ph.D. (lecturer)
Mgr. Jan Böhm (seminar tutor)
Ing. Matouš Cabalka (seminar tutor)
Mgr. Bc. Martin Chvátal, Ph.D. (seminar tutor)
Ing. Lukáš Kokrda (seminar tutor)
doc. Mgr. Maria Králová, Ph.D. (seminar tutor)
Ing. Mgr. Markéta Matulová, Ph.D. (seminar tutor)
Mgr. Petra Ráboňová, Ph.D. (seminar tutor)
Ing. Mgr. Vlastimil Reichel, Ph.D. (seminar tutor)
Ing. Jana Vechetová (seminar tutor)
Mgr. Lenka Zavadilová, Ph.D. (seminar tutor)
Mgr. et Mgr. Iva Raclavská, DiS. (assistant)
Guaranteed by
doc. Mgr. Maria Králová, Ph.D.
Department of Applied Mathematics and Computer Science – Faculty of Economics and Administration
Contact Person: Lenka Hráčková
Supplier department: Department of Applied Mathematics and Computer Science – Faculty of Economics and Administration
Timetable
Tue 12:00–13:50 P101, except Tue 29. 3.
  • Timetable of Seminar Groups:
BPM_STA2/01: Tue 16:00–17:50 VT105, except Tue 29. 3., M. Cabalka
BPM_STA2/02: Wed 8:00–9:50 VT204, except Wed 30. 3., M. Chvátal
BPM_STA2/03: Thu 10:00–11:50 VT206, except Thu 31. 3., P. Ráboňová
BPM_STA2/04: Thu 12:00–13:50 VT206, except Thu 31. 3., P. Ráboňová
BPM_STA2/05: Thu 8:00–9:50 VT105, except Thu 31. 3., M. Matulová
BPM_STA2/06: Tue 12:00–13:50 VT206, except Tue 29. 3.
BPM_STA2/07: Thu 8:00–9:50 VT206, except Thu 31. 3., P. Ráboňová
BPM_STA2/08: Tue 18:00–19:50 VT206, except Tue 29. 3., J. Vechetová
BPM_STA2/09: Thu 12:00–13:50 VT204, except Thu 31. 3., M. Matulová
BPM_STA2/10: Thu 14:00–15:50 VT204, except Thu 31. 3.
BPM_STA2/11: Wed 10:00–11:50 VT202, except Wed 30. 3.
BPM_STA2/12: Tue 16:00–17:50 VT204, except Tue 29. 3., J. Vechetová
BPM_STA2/13: Thu 10:00–11:50 VT105, except Thu 31. 3.
BPM_STA2/14: Thu 16:00–17:50 VT206, except Thu 31. 3.
BPM_STA2/15: Wed 8:00–9:50 VT105, except Wed 30. 3.
BPM_STA2/16: Wed 10:00–11:50 VT204, except Wed 30. 3., M. Chvátal
BPM_STA2/17: Wed 12:00–13:50 VT202, except Wed 30. 3., V. Reichel
BPM_STA2/18: Wed 14:00–15:50 VT202, except Wed 30. 3., V. Reichel
BPM_STA2/19: Tue 14:00–15:50 VT105, except Tue 29. 3., M. Cabalka
BPM_STA2/20: Tue 18:00–19:50 VT105, except Tue 29. 3.
BPM_STA2/21: Thu 18:00–19:50 VT202, except Thu 31. 3.
BPM_STA2/22: Tue 16:00–17:50 VT202, except Tue 29. 3.
Prerequisites
( BPM_STA1 Statistics 1 )
The basic terms in calculus of probability.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
At the end of the course students should be able to:
- understand and explain the basics of statistical inference;
- use the basic testing procedures;
- operate the statistical software.
Learning outcomes
After graduation of the course student should be able to:
- distinguish between sample and population and properly interpret principles of inferential statistics
- determine statistical methods appropriate for particular application context
- solve tasks based on real data by means of sw. STATSTICA
- interpret properly outputs of analyses
Syllabus
  • - Normal as well as derived exact distributions (Pearson distribution, Student distribution, F distribution) and their properties; quantile tables.
  • - Law of large numbers, central limit theorem.
  • - Basic concepts of mathematical statistics; inductive statistics, random sampling, sample statistic.
  • - Point estimation and interval estimation of population parameters and parametric functions.
  • - Introduction to hypotheses testing.
  • - The statistical inferences based on a single sample from normal distribution.
  • - The statistical inferences based on two independent samples from the normal distribution.
  • - The statistical inferences based on one sample or two independent samples from Bernoulli (zero-one) distribution.
  • - One-way analysis of variance.
  • - Simple linear regression.
  • - Introduction to correlation analysis.
  • - The relationship between two variables on the nominal or ordinal scale
  • - Nonparametric tests on medians
Literature
    required literature
  • BUDÍKOVÁ, Marie, Maria KRÁLOVÁ and Bohumil MAROŠ. Průvodce základními statistickými metodami (Guide to basic statistical methods). vydání první. Praha: Grada Publishing, a.s., 2010, 272 pp. edice Expert. ISBN 978-80-247-3243-5. URL info
    not specified
  • WEISS, N. A. Introductory statistics. Edited by Carol A. Weiss. 10th edition, global edition. Boston: Pearson, 2017, 763, 73. ISBN 9781292099729. info
Teaching methods
Theoretical lectures; computer seminar sessions.
Assessment methods
The final grade is given by the score of the final test.
The requirements for taking the test are:
to be active at seminar sessions which are compulsory and to pass 2 Ropots.
Any copying, recording or leaking tests, use of unauthorized tools, aids and communication devices, or other disruptions of objectivity of exams (credit tests) will be considered non-compliance with the conditions for course completion as well as a severe violation of the study rules. Consequently, the teacher will finish the exam (credit test) by awarding grade "F" in the Information System, and the Dean will initiate disciplinary proceedings that may result in study termination.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
General note: Přednášky jsou dostupné online a ze záznamu.
Information on course enrolment limitations: max. 30 cizích studentů; cvičení pouze pro studenty ESF
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2010, Spring 2011, Spring 2012, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, Spring 2018, Spring 2019, Spring 2020, Spring 2021, Spring 2023, Spring 2024.
  • Enrolment Statistics (Spring 2022, recent)
  • Permalink: https://is.muni.cz/course/econ/spring2022/BPM_STA2