FI:M003 Linear Algebra and Geometry I - Course Information
M003 Linear Algebra and Geometry I
Faculty of InformaticsAutumn 2001
- Extent and Intensity
- 3/2. 5 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- Mgr. Michal Bulant, Ph.D. (lecturer)
doc. RNDr. Martin Čadek, CSc. (lecturer)
prof. RNDr. Jan Paseka, CSc. (lecturer) - Guaranteed by
- doc. RNDr. Jiří Kaďourek, CSc.
Departments – Faculty of Science
Contact Person: doc. RNDr. Martin Čadek, CSc. - Timetable of Seminar Groups
- M003/P1: Tue 9:00–11:50 UKP
M003/P2: Thu 9:20–11:50 UKP
M003/P3: Thu 17:00–19:50 D2 - Prerequisites (in Czech)
- NOW( M003c Linear Algebra and Geometry I ) && (! M503 Linear Algebra and Geometry I )&&(!NOW( M503 Linear Algebra and Geometry I ))
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Informatics (programme FI, B-IN)
- Informatics (programme FI, M-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, M-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, M-SS)
- Information Technology (programme FI, B-IN)
- Syllabus
- Scalars, vectors and matrices: Properties of real and complex numbers, vector spaces and their examples, $R^n$ and $C^n$, multiplication of matrices, systems of linear eguations, Gauss elimination, computation of inverse matrices.
- Vector spaces - basic notions: Linear combinations, linear independence, basis, dimension, vector subspaces, intersections and sums of subspaces, coordinates.
- Linear mappings: Definition, kernel and image, linear isomorphism, matrix of linear mapping in given bases, transformation of coordinates.
- Systems of linear equations: Properties of sets of solutions, rank a matrix, existence of solutions.
- Determinants: Permutations, definition and basic properties of determinants, computation of inverse matrices, application to systems of linear equations.
- Affine subspaces in $R^n$: Definition, parametric and implicit description, affine mapping.
- Literature
- Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na
http://www.math.muni.cz/~slovak . - Zlatoš, Pavol. Lineárna algebra a geometria. Předběžná verze učebních skript MFF UK v Bratislavě.
- Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na
- Assessment methods (in Czech)
- Bude vyžadováno početní i teoretické zvládnutí přednesené látky (porozumění základním pojmům a větám, jednoduché důkazy).
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
- Teacher's information
- http://www.math.muni.cz/~cadek
- Enrolment Statistics (Autumn 2001, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2001/M003