MB103 Mathematics III

Faculty of Informatics
Autumn 2004
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Roman Šimon Hilscher, DSc. (lecturer)
RNDr. Gabriela Kraváčková (seminar tutor)
Mgr. et Mgr. Lukáš Maňásek (seminar tutor)
Mgr. Daniel Marek, Ph.D. (seminar tutor)
Mgr. Zdeněk Opluštil, Ph.D. (seminar tutor)
Mgr. Stepan Sukovych (seminar tutor)
Mgr. Hana Štěpánková, Ph.D. (seminar tutor)
Mgr. Magda Zemánková (seminar tutor)
Guaranteed by
prof. RNDr. Ondřej Došlý, DrSc.
Faculty of Informatics
Timetable
Tue 8:00–9:50 D1
  • Timetable of Seminar Groups:
MB103/01: Thu 16:00–17:50 B007, G. Kraváčková
MB103/02: Thu 14:00–15:50 B007, G. Kraváčková
MB103/03: Wed 8:00–9:50 B007, Z. Opluštil
MB103/04: Wed 10:00–11:50 B007, Z. Opluštil
MB103/05: Thu 10:00–11:50 B003, S. Sukovych
MB103/06: Thu 8:00–9:50 B003, S. Sukovych
MB103/07: Fri 12:00–13:50 B007, M. Zemánková
Prerequisites (in Czech)
MB102 Mathematics II || M003 Linear Algebra and Geometry I || M503 Linear Algebra and Geometry I || MB003 Linear Algebra and Geometry I
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The third part of the block Mathematics I-IV. For the brief content of the whole block see Mathematics I, MB101.
Syllabus
  • Real sequences. Limit and continuity of real functions, theorems on continuous functions. Derivative, differential and their geometrical meaning. Elementary functions and their properties. Local and global extrema, investigation of graphs of real functions. Antiderivative, basic integration methods, substitution method and integration by parts. Integration of rational functions, trigonometric and irrational integrals. Riemann integral and its properties. Application of Riemann integral, measure of subgraphs, length of a planar curve, volume of a rotational space figure.
Literature
  • DOŠLÁ, Zuzana and Jaromír KUBEN. Diferenciální počet funkcí jedné proměnné (Differential Calculus of Functions of One Variable). Brno: Masarykova Univerzita v Brně, 2003, 215 pp. skriptum. ISBN 80-210-3121-2. info
  • NOVÁK, Vítězslav. Integrální počet v R. 3., přepracované vyd. Brno: Masarykova univerzita, 2001, 85 pp. ISBN 80-210-2720-7. info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Assessment methods (in Czech)
Two-hour lectures and practising, two-hour written final exam. Dvouhodinová přednáška a cvičení zakončené písemnou zkouškou.
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.
  • Enrolment Statistics (Autumn 2004, recent)
  • Permalink: https://is.muni.cz/course/fi/autumn2004/MB103