FI:MB103 Mathematics III - Course Information
MB103 Mathematics III
Faculty of InformaticsAutumn 2004
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Roman Šimon Hilscher, DSc. (lecturer)
RNDr. Gabriela Kraváčková (seminar tutor)
Mgr. et Mgr. Lukáš Maňásek (seminar tutor)
Mgr. Daniel Marek, Ph.D. (seminar tutor)
Mgr. Zdeněk Opluštil, Ph.D. (seminar tutor)
Mgr. Stepan Sukovych (seminar tutor)
Mgr. Hana Štěpánková, Ph.D. (seminar tutor)
Mgr. Magda Zemánková (seminar tutor) - Guaranteed by
- prof. RNDr. Ondřej Došlý, DrSc.
Faculty of Informatics - Timetable
- Tue 8:00–9:50 D1
- Timetable of Seminar Groups:
MB103/02: Thu 14:00–15:50 B007, G. Kraváčková
MB103/03: Wed 8:00–9:50 B007, Z. Opluštil
MB103/04: Wed 10:00–11:50 B007, Z. Opluštil
MB103/05: Thu 10:00–11:50 B003, S. Sukovych
MB103/06: Thu 8:00–9:50 B003, S. Sukovych
MB103/07: Fri 12:00–13:50 B007, M. Zemánková - Prerequisites (in Czech)
- MB102 Mathematics II || M003 Linear Algebra and Geometry I || M503 Linear Algebra and Geometry I || MB003 Linear Algebra and Geometry I
- Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Informatics with another discipline (programme FI, B-BI)
- Informatics with another discipline (programme FI, B-FY)
- Informatics with another discipline (programme FI, B-GE)
- Informatics with another discipline (programme FI, B-GK)
- Informatics with another discipline (programme FI, B-CH)
- Informatics with another discipline (programme FI, B-IO)
- Informatics with another discipline (programme FI, B-MA)
- Informatics with another discipline (programme FI, B-SO)
- Informatics with another discipline (programme FI, B-TV)
- Course objectives
- The third part of the block Mathematics I-IV. For the brief content of the whole block see Mathematics I, MB101.
- Syllabus
- Real sequences. Limit and continuity of real functions, theorems on continuous functions. Derivative, differential and their geometrical meaning. Elementary functions and their properties. Local and global extrema, investigation of graphs of real functions. Antiderivative, basic integration methods, substitution method and integration by parts. Integration of rational functions, trigonometric and irrational integrals. Riemann integral and its properties. Application of Riemann integral, measure of subgraphs, length of a planar curve, volume of a rotational space figure.
- Literature
- DOŠLÁ, Zuzana and Jaromír KUBEN. Diferenciální počet funkcí jedné proměnné (Differential Calculus of Functions of One Variable). Brno: Masarykova Univerzita v Brně, 2003, 215 pp. skriptum. ISBN 80-210-3121-2. info
- NOVÁK, Vítězslav. Integrální počet v R. 3., přepracované vyd. Brno: Masarykova univerzita, 2001, 85 pp. ISBN 80-210-2720-7. info
- Bookmarks
- https://is.muni.cz/ln/tag/FI:MB103!
- Assessment methods (in Czech)
- Two-hour lectures and practising, two-hour written final exam. Dvouhodinová přednáška a cvičení zakončené písemnou zkouškou.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course is taught annually.
- Listed among pre-requisites of other courses
- Enrolment Statistics (Autumn 2004, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2004/MB103