IB107 Computability and Complexity

Faculty of Informatics
Autumn 2005
Extent and Intensity
2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
Teacher(s)
prof. RNDr. Luboš Brim, CSc. (lecturer)
doc. RNDr. Ivan Kopeček, CSc. (seminar tutor)
doc. Mgr. Jan Obdržálek, PhD. (seminar tutor)
RNDr. Jan Flasar, Ph.D. (assistant)
Guaranteed by
prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Luboš Brim, CSc.
Timetable
Thu 15:00–16:50 D2
  • Timetable of Seminar Groups:
IB107/01: Thu 10:00–10:50 B007, I. Kopeček
IB107/02: Thu 11:00–11:50 B007, J. Obdržálek
IB107/03: Thu 12:00–12:50 B011, J. Obdržálek
IB107/04: Thu 13:00–13:50 B011, J. Obdržálek
Prerequisites (in Czech)
IB005 Formal languages and Automata || I005 Formal Languages and Automata I || I505 Formal Languages and Automata I
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The course introduces basic approaches and methods for classification of problems with respect to their algorithmic solvability. It explores theoretical and practical limits of computers usage and consequences these limitations have for advancing information technologies.
Syllabus
  • Problems and algorithms.
  • Algorithms and models of computation. Basic models of computation. Church thesis.
  • Classification of problems. Decidable, undecidable and partially decidable problems.
  • Closure properties. Post correspondence problem. Selected undecidable problems in the theory of languages.
  • Computational complexity. Feasible and unfeasible problems. Polynomial computational thesis.
  • Reduction a completness in problem classes. Many-one reduction and polynomial reduction. Complete problems with respect to decidability, NP-complete problems. Applications.
  • Non-sequential models of computation. Parallel computational thesis.
Literature
  • KOZEN, Dexter C. Automata and computability. New York: Springer, 1997, xiii, 400. ISBN 0387949070. info
  • SIPSER, Michael. Introduction to the theory of computation. Boston: PWS Publishing Company, 1997, xv, 396 s. ISBN 0-534-94728-X. info
  • BOVET, D. and Pierluigi CRESCENZI. Introduction to the theory of complexity. New York: Prentice-Hall, 1994, xi, 282 s. ISBN 0-13-915380-2. info
  • KFOURY, A. J., Robert N. MOLL and Michael A. ARBIB. A programming approach to computability. New York: Springer-Verlag, 1982, viii, 251. ISBN 0-387-90743-2. info
Assessment methods (in Czech)
Zkouška je písemná a ústní. V případě zadání průběžných testů během semestru, mají tyto podíl nejvýše 30% na závěrečném hodnocení. Pomocné materiály nejsou povoleny.
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
Teacher's information
http://www.fi.muni.cz/usr/brim/IB107
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, Autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.
  • Enrolment Statistics (Autumn 2005, recent)
  • Permalink: https://is.muni.cz/course/fi/autumn2005/IB107