FI:MA007 Mathematical Logic - Course Information
MA007 Mathematical Logic
Faculty of InformaticsAutumn 2006
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- prof. RNDr. Petr Hliněný, Ph.D. (lecturer)
prof. RNDr. Antonín Kučera, Ph.D. (lecturer)
doc. RNDr. Tomáš Brázdil, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Petr Hliněný, Ph.D. - Timetable
- Wed 14:00–15:50 D3
- Timetable of Seminar Groups:
MA007/02: each odd Thursday 8:00–9:50 B007, T. Brázdil
MA007/03: each even Thursday 10:00–11:50 B007, T. Brázdil
MA007/04: each odd Thursday 10:00–11:50 B007, T. Brázdil - Prerequisites
- ! M007 Mathematical Logic && ( M005 Foundations of mathematics || MB005 Foundations of mathematics || MB101 Mathematics I )
It is necessary to go in advance through the subject MB005 Foundations of mathematics or through the subject MB101 Mathematics I. It is recommended to go either in advance or simultaneously also through the subject MB008 Algebra I. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Informatics (programme FI, B-IN)
- Informatics (programme FI, M-IN)
- Informatics (programme FI, N-IN)
- Mathematics - Economics (programme PřF, M-AM)
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, M-MA, specialization Applied Mathematics)
- Mathematics (programme PřF, M-MA, specialization Discrete Mathematics)
- Mathematics (programme PřF, M-MA, specialization Mathematical Analysis)
- Upper Secondary School Teacher Training in Informatics (programme FI, M-SS)
- Upper Secondary School Teacher Training in Informatics (programme FI, M-TV)
- Upper Secondary School Teacher Training in Informatics (programme FI, N-SS)
- Course objectives
- The contents of this course consists of propositional and predicate logic. The topics covered comprise axioms of propositional and predicate logic, the notions of truth, validity and provability, theories of predicate logic and their models, Gödel completeness theorem and its consequences, including some pieces of information on complete theories.
- Syllabus
- Propositional logic: propositional formulas, truth, provability, completeness theorem
- Predicate logic: predicate formulas
- Semantics of predicate logic: realizations, truth, validity
- Axioms of predicate logic: provability, correctness, deduction theorem
- Completeness theorem: theories, models, Gödel completeness theorem
- Compactness theorem, Löwenheim-Skolem theorem
- Complete theories: elementary equivalence, Los-Vaught theorem
- Literature
- MENDELSON, Elliott. Vvedenije v matematičeskuju logiku. Edited by Sergej Ivanovič Adjan, Translated by F. A. Kabakov. Izd. 2-oje, ispr. Moskva: Nauka. Glavnaja redakcija fiziko-matematičeskoj literatury, 1976, 320 s. info
- ŠTĚPÁNEK, Petr. Matematická logika. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1982, 281 s. info
- KOLÁŘ, Josef, Olga ŠTĚPÁNKOVÁ and Michal CHYTIL. Logika, algebry a grafy. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1989, 434 s. info
- Assessment methods (in Czech)
- Předmět je ukončen písemnou zkouškou.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
- Enrolment Statistics (Autumn 2006, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2006/MA007