FI:MA012 Statistics II - Course Information
MA012 Statistics II
Faculty of InformaticsAutumn 2007
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- RNDr. Marie Budíková, Dr. (lecturer)
RNDr. Ivo Moll, CSc. (lecturer)
Mgr. Tomáš Lerch (seminar tutor)
prof. RNDr. Luboš Brim, CSc. (assistant) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Departments – Faculty of Science - Timetable
- Tue 12:00–13:50 B204
- Timetable of Seminar Groups:
MA012/02: Mon 10:00–11:50 B116, Mon 10:00–11:50 B007, T. Lerch - Prerequisites (in Czech)
- Statistika II předpokládá znalost základů statistiky získaných např. po absolvování předmětu Statistika I.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Information Technology Security (programme FI, N-IN)
- Bioinformatics (programme FI, N-AP)
- Information Systems (programme FI, N-IN)
- Informatics (programme FI, M-IN)
- Informatics (programme FI, N-IN)
- Parallel and Distributed Systems (programme FI, N-IN)
- Computer Graphics (programme FI, N-IN)
- Computer Networks and Communication (programme FI, N-IN)
- Computer Systems (programme FI, N-IN)
- Embedded Systems (eng.) (programme FI, N-IN)
- Theoretical Informatics (programme FI, N-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, M-SS)
- Upper Secondary School Teacher Training in Informatics (programme FI, M-TV)
- Upper Secondary School Teacher Training in Informatics (programme FI, N-SS) (2)
- Artificial Intelligence and Natural Language Processing (programme FI, N-IN)
- Image Processing (programme FI, N-AP)
- Course objectives
- Random samples, point and interval estimators of parametrs and parametrical functions, statistical hypotheses testing, correlation and regression analysis.
- Syllabus
- Basic ideas of inferential statistics. Samples and sample characteristics.
- Properties of the point estimators.
- Properties of the normal and asymptotically normal samples.
- Interval estimators.
- Statistical hypotheses testing.
- Analysis of correlation.
- Multidimensional linear regression.
- Statistical computation pacquets.
- Literature
- ANDĚL, Jiří. Statistické metody. 1. vyd. Praha: Matfyzpress, 1993, 246 s. info
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika. Sbírka příkladů. (Probability Theory and Mathematical Statistics. Collection of Tasks.). 2.,přepracované vyd. Brno: Masarykova univerzita Brno, 1998, 127 pp. ISBN 80-210-1832-1. info
- OSECKÝ, Pavel. Statistické vzorce a věty. 1. vyd. Brno: Masarykova univerzita, 1998, [29] list. ISBN 8021017589. info
http://home.zcu.cz/~friesl/hpsb/
- Assessment methods (in Czech)
- Výuka probíhá každý týden v rozsahu 2 hodiny přednášek, 2 hodiny cvičení. Nutnou podmínkou udělení zápočtu je vypracování zápočtového příkladu. Zkouška písemná, sestává z testové části a části s příklady.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
- Enrolment Statistics (Autumn 2007, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2007/MA012