FI:PA164 Learning and natural language - Course Information
PA164 Machine learning and natural language processing
Faculty of InformaticsAutumn 2011
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- Mgr. Jan Knotek (assistant)
RNDr. Petr Kosina, Ph.D. (assistant)
doc. RNDr. Lubomír Popelínský, Ph.D. (lecturer) - Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics - Timetable
- Wed 14:00–15:50 B411, Wed 16:00–16:50 B001
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Information Technology Security (programme FI, N-IN)
- Bioinformatics (programme FI, N-AP)
- Czech Language with Orientation on Computational Linguistics (programme FF, B-FI)
- Information Systems (programme FI, N-IN)
- Informatics (eng.) (programme FI, D-IN4)
- Informatics (programme FI, D-IN4)
- Informatics (programme FI, N-IN)
- Parallel and Distributed Systems (programme FI, N-IN)
- Computer Graphics (programme FI, N-IN)
- Computer Networks and Communication (programme FI, N-IN)
- Computer Systems and Technologies (eng.) (programme FI, D-IN4)
- Computer Systems and Technologies (programme FI, D-IN4)
- Computer Systems (programme FI, N-IN)
- Embedded Systems (eng.) (programme FI, N-IN)
- Embedded Systems (programme FI, N-IN)
- Service Science, Management and Engineering (eng.) (programme FI, N-AP)
- Service Science, Management and Engineering (programme FI, N-AP)
- Social Informatics (programme FI, B-AP)
- Theoretical Informatics (programme FI, N-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, N-SS) (2)
- Artificial Intelligence and Natural Language Processing (programme FI, N-IN)
- Image Processing (programme FI, N-AP)
- Course objectives
- Students will obtain knowledge about methods and tools for text mining and natural language learning. At the end of the course students should be able to create systems for text analysis by machine learning methods. Students are able to understand, explain and exploit contents of scientific papers from this area.
- Syllabus
- Natural language processing(NLP). Corpora. Tools for NLP.
- Inroduction to machine learning
- Disambiguation. Morphological disambiguaiton and word-sense disambiguation
- Shallow parsing and machine learning
- Entity recognition and collocations
- Document categorization
- Information extraction from text
- Text mining
- Web mining
- Literature
- Teaching methods
- a lecture combined with demonstrations and a work on a project
- Assessment methods
- Combination of written and oral examination. A defence of a project is as a part of the examination.
- Language of instruction
- Czech
- Further Comments
- Study Materials
- Teacher's information
- http://www.fi.muni.cz/~popel/lectures/ll/
- Enrolment Statistics (Autumn 2011, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2011/PA164