FI:MB103 Mathematics III - Course Information
MB103 Mathematics III
Faculty of InformaticsAutumn 2012
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Michal Bulant, Ph.D. (lecturer)
Mgr. Petr Pupík (lecturer)
Mgr. Zdeněk Kadeřábek, Ph.D. (seminar tutor)
Mgr. Bc. Jaromír Kuben (seminar tutor)
Mgr. Tamara Lorencová, Ph.D. (seminar tutor)
Mgr. Lenka Mžourková Macálková (seminar tutor)
Mgr. et Mgr. Alena Novotná (seminar tutor)
Mgr. Bc. Kamil Rajdl, Ph.D. (seminar tutor)
RNDr. Jan Vondra, Ph.D. (seminar tutor)
Mgr. Milan Werl, Ph.D. (seminar tutor)
Mgr. Silvie Zlatošová, Ph.D. (seminar tutor)
Mgr. Jan Fikejs (assistant) - Guaranteed by
- prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Supplier department: Faculty of Science - Timetable
- Mon 18:00–19:50 D1, Wed 12:00–13:50 D1
- Timetable of Seminar Groups:
MB103/T01AA: Fri 8:00–10:55 Učebna S8 (17), A. Novotná
MB103/T02: Wed 19. 9. to Fri 21. 12. Wed 9:00–10:55 Učebna S7 (18), M. Werl
MB103/01: Thu 8:00–9:50 G124, S. Zlatošová
MB103/02: Fri 8:00–9:50 G125, S. Zlatošová
MB103/03: Fri 10:00–11:50 G125, S. Zlatošová
MB103/04: Mon 12:00–13:50 G124, L. Mžourková Macálková
MB103/05: Mon 14:00–15:50 G124, L. Mžourková Macálková
MB103/06: Tue 12:00–13:50 G125, L. Mžourková Macálková
MB103/07: Wed 18:00–19:50 G125, J. Kuben
MB103/08: Thu 18:00–19:50 G125, J. Kuben, rezerva
MB103/09: Wed 14:00–15:50 G124, J. Kuben
MB103/10: Mon 8:00–9:50 G125, K. Rajdl
MB103/11: Mon 10:00–11:50 G125, K. Rajdl
MB103/12: Wed 16:00–17:50 G124, Z. Kadeřábek
MB103/13: Thu 16:00–17:50 G124, T. Lorencová
MB103/14: Thu 18:00–19:50 G124, T. Lorencová
MB103/15: Wed 18:00–19:50 G124, Z. Kadeřábek - Prerequisites
- Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Bioinformatics (programme FI, B-AP)
- Economics (programme ESF, M-EKT)
- Informatics with another discipline (programme FI, B-EB)
- Informatics with another discipline (programme FI, B-FY)
- Informatics with another discipline (programme FI, B-IO)
- Informatics with another discipline (programme FI, B-MA)
- Informatics with another discipline (programme FI, B-TV)
- Public Administration Informatics (programme FI, B-AP)
- Computer Graphics and Image Processing (programme FI, B-IN)
- Computer Networks and Communication (programme FI, B-IN)
- Computer Systems and Data Processing (programme FI, B-IN)
- Programmable Technical Structures (programme FI, B-IN)
- Embedded Systems (programme FI, N-IN)
- Service Science, Management and Engineering (programme FI, N-AP)
- Social Informatics (programme FI, B-AP)
- Course objectives
- The third part of the block Mathematics I-IV. For the brief content and aims of the whole block see Mathematics I, MB101. Main objectives can be summarized as follows: to extend the techniques of the Calculus for functions of more variables, including a brief introduction to the theory of ordinary differential equations; to introduce a basic survey of concepts and tools in graph theory; to present a few explicit applications of the graph theory methods.
- Syllabus
- Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions. Combinatorial methods: plane graphs, graph coloring, Euler circles, trees and minimal spaning trees, flows in networks, tree games and further selected applications.
- Literature
- RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
- MATOUŠEK, Jiří and Jaroslav NEŠETŘIL. Kapitoly z diskrétní matematiky. Vyd. 2., opr. Praha: Univerzita Karlova v Praze, nakladatelství Karolinum, 2000, 377 s. ISBN 8024600846. info
- PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
- DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
- SEKANINA, Milan and Anna SEKANINOVÁ. Vybrané kapitoly z kombinatoriky a teorie grafů. 1. vyd. Brno: Rektorát UJEP, 1987, 51 s. info
- NEŠETŘIL, Jaroslav. Teorie grafů. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1979, 316 s. URL info
- Bookmarks
- https://is.muni.cz/ln/tag/FI:MB103!
- Teaching methods
- There are theoretical lectures, practical demonstration of the computational aspects, and standard tutorial accompanied by homework assessment.
- Assessment methods
- Two hours of lectures and two hours of presentations of typical problem solutions. Obligatory tutorials, the exam includes at least 2 written mid-term tests and final written test.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Enrolment Statistics (Autumn 2012, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2012/MB103