MB103 Mathematics III

Faculty of Informatics
Autumn 2012
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
Mgr. Michal Bulant, Ph.D. (lecturer)
Mgr. Petr Pupík (lecturer)
Mgr. Zdeněk Kadeřábek, Ph.D. (seminar tutor)
Mgr. Bc. Jaromír Kuben (seminar tutor)
Mgr. Tamara Lorencová, Ph.D. (seminar tutor)
Mgr. Lenka Mžourková Macálková (seminar tutor)
Mgr. et Mgr. Alena Novotná (seminar tutor)
Mgr. Bc. Kamil Rajdl, Ph.D. (seminar tutor)
RNDr. Jan Vondra, Ph.D. (seminar tutor)
Mgr. Milan Werl, Ph.D. (seminar tutor)
Mgr. Silvie Zlatošová, Ph.D. (seminar tutor)
Mgr. Jan Fikejs (assistant)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Supplier department: Faculty of Science
Timetable
Mon 18:00–19:50 D1, Wed 12:00–13:50 D1
  • Timetable of Seminar Groups:
MB103/T01A: Wed 14:00–15:55 Učebna S8 (17), A. Novotná
MB103/T01AA: Fri 8:00–10:55 Učebna S8 (17), A. Novotná
MB103/T02: Wed 19. 9. to Fri 21. 12. Wed 9:00–10:55 Učebna S7 (18), M. Werl
MB103/01: Thu 8:00–9:50 G124, S. Zlatošová
MB103/02: Fri 8:00–9:50 G125, S. Zlatošová
MB103/03: Fri 10:00–11:50 G125, S. Zlatošová
MB103/04: Mon 12:00–13:50 G124, L. Mžourková Macálková
MB103/05: Mon 14:00–15:50 G124, L. Mžourková Macálková
MB103/06: Tue 12:00–13:50 G125, L. Mžourková Macálková
MB103/07: Wed 18:00–19:50 G125, J. Kuben
MB103/08: Thu 18:00–19:50 G125, J. Kuben, rezerva
MB103/09: Wed 14:00–15:50 G124, J. Kuben
MB103/10: Mon 8:00–9:50 G125, K. Rajdl
MB103/11: Mon 10:00–11:50 G125, K. Rajdl
MB103/12: Wed 16:00–17:50 G124, Z. Kadeřábek
MB103/13: Thu 16:00–17:50 G124, T. Lorencová
MB103/14: Thu 18:00–19:50 G124, T. Lorencová
MB103/15: Wed 18:00–19:50 G124, Z. Kadeřábek
Prerequisites
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The third part of the block Mathematics I-IV. For the brief content and aims of the whole block see Mathematics I, MB101. Main objectives can be summarized as follows: to extend the techniques of the Calculus for functions of more variables, including a brief introduction to the theory of ordinary differential equations; to introduce a basic survey of concepts and tools in graph theory; to present a few explicit applications of the graph theory methods.
Syllabus
  • Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions. Combinatorial methods: plane graphs, graph coloring, Euler circles, trees and minimal spaning trees, flows in networks, tree games and further selected applications.
Literature
  • RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
  • MATOUŠEK, Jiří and Jaroslav NEŠETŘIL. Kapitoly z diskrétní matematiky. Vyd. 2., opr. Praha: Univerzita Karlova v Praze, nakladatelství Karolinum, 2000, 377 s. ISBN 8024600846. info
  • PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
  • DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
  • SEKANINA, Milan and Anna SEKANINOVÁ. Vybrané kapitoly z kombinatoriky a teorie grafů. 1. vyd. Brno: Rektorát UJEP, 1987, 51 s. info
  • NEŠETŘIL, Jaroslav. Teorie grafů. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1979, 316 s. URL info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB103!
Teaching methods
There are theoretical lectures, practical demonstration of the computational aspects, and standard tutorial accompanied by homework assessment.
Assessment methods
Two hours of lectures and two hours of presentations of typical problem solutions. Obligatory tutorials, the exam includes at least 2 written mid-term tests and final written test.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019.
  • Enrolment Statistics (Autumn 2012, recent)
  • Permalink: https://is.muni.cz/course/fi/autumn2012/MB103