FI:PV181 Lab - security, appl. crypto I - Course Information
PV181 Laboratory of security and applied cryptography I
Faculty of InformaticsAutumn 2012
- Extent and Intensity
- 0/2/1. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: k (colloquium). Other types of completion: z (credit).
- Teacher(s)
- Ing. Mgr. et Mgr. Zdeněk Říha, Ph.D. (lecturer)
Mgr. et Mgr. Jan Krhovják, Ph.D. (seminar tutor)
doc. RNDr. Petr Švenda, Ph.D. (seminar tutor)
Mgr. Vít Bukač, Ph.D. (assistant) - Guaranteed by
- prof. RNDr. Luděk Matyska, CSc.
Department of Computer Systems and Communications – Faculty of Informatics
Contact Person: Ing. Mgr. et Mgr. Zdeněk Říha, Ph.D.
Supplier department: Department of Computer Systems and Communications – Faculty of Informatics - Timetable of Seminar Groups
- PV181/01: Mon 14:00–15:50 G191a, Z. Říha
PV181/02: Mon 16:00–17:50 G191a, Z. Říha - Prerequisites
- Registration to PV181 requires: 1) long-term interest in IT security; 2) programming skills (ideally C and Java) under Unix/Linux or Win32; 3) fluent English.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 30 student(s).
Current registration and enrolment status: enrolled: 0/30, only registered: 0/30, only registered with preference (fields directly associated with the programme): 0/30 - fields of study / plans the course is directly associated with
- there are 37 fields of study the course is directly associated with, display
- Course objectives
- The aim of this subject is to understand implementation details of cryptographic algortithms and protocols and be able to apply the gained knowledge in practice. At the end of the course students should be able to design and implement cryptographic applications independently.
- Syllabus
- Principles of cryptography and cryptographic standards (symmetric cryptography, random number generation, hash functions, asymmetric cryptography, certificates, certification authority, PKI). Using cryptographic libraries in cryptoaplications (OpenSSL, Cryptlib, Microsoft Crypto API, Java). Digital Signatures (CMS/PKCS#7 structure, S/MIME, Czech legislation). Smartcards (using the PC/SC interface to communicate with the smartcards/smartcard readers, APDU commands/replies, Secure Messaging, Javacards and programming of own applications running on smartcards). Electronic passports (principles, access control, reading of data).
- Literature
- Handbook of biometrics. Edited by Patrick J. Flynn - Arun A. Ross - Anil K. Jain. New York: Springer, 2008, x, 556. ISBN 9780387710402. info
- STALLINGS, William. Network security essentials :applications and standards. 2nd ed. Upper Saddle River: Prentice Hall, 2003, xv, 409 s. ISBN 0-13-120271-5. info
- JAIN, Anil K., Ruud BOLLE and Sharath PANKANTI. Biometrics: Personal Identification in Networked Society. Norwell, Massachusetts: Kluwer Academic Publishers, 1999, 411 pp. Second printing 1999. ISBN 0-7923-8345-1. info
- Teaching methods
- seminars in a security lab, homeworks
- Assessment methods
- Two hours per week are scheduled for seminars, otherwise students work on projects, homeworks etc. in their free time. There are 12 homeworks (10 points each). To get the credit (Z) 50% of the points are required.
- Language of instruction
- English
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually.
- Enrolment Statistics (Autumn 2012, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2012/PV181