FI:MB103 Cont. models and statistics - Course Information
MB103 Continuous models and statistics
Faculty of InformaticsAutumn 2016
- Extent and Intensity
- 2/2/0. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Jan Slovák, DrSc. (lecturer)
Mgr. Bc. Kateřina Družbíková (seminar tutor)
Mgr. Bc. Martin Chvátal, Ph.D. (seminar tutor)
RNDr. Jana Komárková, Ph.D. (seminar tutor)
Mgr. Jan Meitner (seminar tutor)
Ing. Mgr. Ondřej Nováček (seminar tutor)
Mgr. et Mgr. Alena Novotná (seminar tutor)
Mgr. Martin Panák, Ph.D. (seminar tutor)
RNDr. Jiří Pecl, Ph.D. (seminar tutor)
Mgr. Radek Suchánek, Ph.D. (seminar tutor)
Mgr. Tomáš Svoboda (seminar tutor)
Mgr. Mária Šimková (seminar tutor)
Arman Taghavi-Chabert, PhD. (seminar tutor)
Mgr. Silvie Zlatošová, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Supplier department: Faculty of Science - Timetable
- Tue 16:00–17:50 D1
- Timetable of Seminar Groups:
MB103/T02: Tue 18. 10. to Tue 20. 12. Tue 9:40–11:15 110, Fri 21. 10. to Fri 23. 12. Fri 9:00–10:35 118, J. Pecl
MB103/01: Wed 12:00–13:50 A320, M. Panák
MB103/02: Wed 14:00–15:50 A320, A. Taghavi-Chabert
MB103/03: Tue 12:00–13:50 A320, M. Panák
MB103/04: Tue 14:00–15:50 A320, M. Panák
MB103/05: Tue 8:00–9:50 B204, S. Zlatošová
MB103/06: Tue 10:00–11:50 B204, S. Zlatošová
MB103/07: Thu 8:00–9:50 B204, O. Nováček
MB103/08: Thu 10:00–11:50 B204, O. Nováček
MB103/09: Thu 14:00–15:50 A320, M. Šimková
MB103/10: Thu 16:00–17:50 A320, M. Šimková
MB103/11: Fri 8:00–9:50 A320, T. Svoboda
MB103/12: Fri 10:00–11:50 A320, T. Svoboda - Prerequisites
- ! MB203 Cont. models, statistics B && ! NOW( MB203 Cont. models, statistics B )
Recommended: knowledge of elementary functions, polynomials, rational functions. Further the elements of matrix calculus, as well knowledge of vector spaces and linear mappings and basic tools of Calculus in one real variable. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Bioinformatics (programme FI, B-AP)
- Economics (programme ESF, M-EKT)
- Informatics with another discipline (programme FI, B-EB)
- Informatics with another discipline (programme FI, B-FY)
- Informatics with another discipline (programme FI, B-IO)
- Informatics with another discipline (programme FI, B-MA)
- Informatics with another discipline (programme FI, B-TV)
- Public Administration Informatics (programme FI, B-AP)
- Computer Graphics and Image Processing (programme FI, B-IN)
- Computer Networks and Communication (programme FI, B-IN)
- Computer Systems and Data Processing (programme FI, B-IN)
- Programmable Technical Structures (programme FI, B-IN)
- Embedded Systems (programme FI, N-IN)
- Service Science, Management and Engineering (programme FI, N-AP)
- Social Informatics (programme FI, B-AP)
- Course objectives
- At the end of this course, students should be able to:
use methods of calculus in the case of functions in more variables; solve basic optimization problems;
understand theoretical concepts of the probability theory; apply methods of mathematical statistics to basic problems. - Syllabus
- The course is the third part of the four semester block of Mathematics. In the entire course, the fundamentals of algebra and number theory, linear algebra and analysis, numerical methods, combinatorics as well as probability and statistics are presented.
- Content of the course Continuous models and statistics:
- Calculus: differential and integral calculus in more variables, selected applications of Calculus, systems of differential equations, numerical solutions.
- Elements of Probability, random variables and their characteristics, descriptive statistics, gentle introduction to methods of Mathematical Statistics.
- Literature
- recommended literature
- DOŠLÁ, Zuzana and Ondřej DOŠLÝ. Diferenciální počet funkcí více proměnných. Vydání první. Brno: Vydavatelství Masarykovy univerzity, 1994, 130 stran. ISBN 8021009926. info
- ZVÁRA, Karel and Josef ŠTĚPÁN. Pravděpodobnost a matematická statistika. 2. vyd. Praha: Matfyzpress, 2001, 230 s. ISBN 8085863243. info
- RILEY, K. F., M. P. HOBSON and S. J. BENCE. Mathematical methods for physics and engineering : a comprehensive guide. 2nd ed. Cambridge: Cambridge University Press, 2002, xxiii, 123. ISBN 0-521-81372-7. info
- J. Slovák, M. Panák a kolektiv, Matematika drsně a svižně, učebnice v přípravě
- not specified
- PLCH, Roman, Zuzana DOŠLÁ and Petr SOJKA. Matematická analýza s programem Maple. Díl 1, Diferenciální počet funkcí více proměnných. (The Multivariable Calculus with program Maple. Part 1, Differencial calculus). prvni. Brno: Masarykova Universita, 1999, 80 pp. ISBN 80-210-2203-5. URL info
- Bookmarks
- https://is.muni.cz/ln/tag/FI:MB103!
- Teaching methods
- Two hours of lectures, two hours of tutorial. Lectures covering the theory with illustrative solved problems. Tutorials devoted to solving numerical problems.
- Assessment methods
- During the semester, two obligatory mid-term exams are evaluated (each for max 10 points). The test written during seminars are evaluated in total by max 5 points. The final exam is two hours long and written for max 20 points. For successful examination (the grade at least E) the student needs in total 20 points or more.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Enrolment Statistics (Autumn 2016, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2016/MB103