FI:IB107 Computability and Complexity - Course Information
IB107 Computability and Complexity
Faculty of InformaticsAutumn 2018
- Extent and Intensity
- 2/1/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Daniel Kráľ, Ph.D., DSc. (lecturer)
doc. RNDr. Petr Novotný, Ph.D. (seminar tutor)
RNDr. Samuel Pastva, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Daniel Kráľ, Ph.D., DSc.
Supplier department: Department of Computer Science – Faculty of Informatics - Timetable
- Fri 10:00–11:50 D1
- Timetable of Seminar Groups:
IB107/02: each odd Thursday 8:00–9:50 A218, D. Kráľ
IB107/03: Mon 17. 9. to Mon 10. 12. each even Monday 8:00–9:50 C416, P. Novotný
IB107/04: Mon 17. 9. to Mon 10. 12. each odd Monday 8:00–9:50 C416, P. Novotný
IB107/05: each even Wednesday 12:00–13:50 A318, P. Novotný
IB107/06: each odd Wednesday 12:00–13:50 A318, P. Novotný
IB107/07: each even Monday 10:00–11:50 C525, S. Pastva
IB107/08: Mon 17. 9. to Mon 10. 12. each odd Monday 10:00–11:50 C525, S. Pastva
IB107/09: each even Monday 12:00–13:50 C525, S. Pastva
IB107/10: Mon 17. 9. to Mon 10. 12. each odd Monday 12:00–13:50 C525, S. Pastva - Prerequisites (in Czech)
- IB005 Formal languages and Automata || IB102 Automata and Grammars
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, B-AP)
- Bioinformatics (programme FI, B-AP)
- Informatics with another discipline (programme FI, B-BI)
- Informatics with another discipline (programme FI, B-EB)
- Informatics with another discipline (programme FI, B-FY)
- Informatics with another discipline (programme FI, B-GE)
- Informatics with another discipline (programme FI, B-GK)
- Informatics with another discipline (programme FI, B-CH)
- Informatics with another discipline (programme FI, B-IO)
- Informatics with another discipline (programme FI, B-MA)
- Informatics with another discipline (programme FI, B-SO)
- Informatics with another discipline (programme FI, B-TV)
- Informatics (programme FI, B-IN)
- Mathematical Informatics (programme FI, B-IN)
- Parallel and Distributed Systems (programme FI, B-IN)
- Computer Graphics and Image Processing (programme FI, B-IN)
- Computer Networks and Communication (programme FI, B-IN)
- Computer Systems and Data Processing (programme FI, B-IN)
- Programmable Technical Structures (programme FI, B-IN)
- Embedded Systems (programme FI, N-IN)
- Service Science, Management and Engineering (programme FI, N-AP)
- Social Informatics (programme FI, B-AP)
- Artificial Intelligence and Natural Language Processing (programme FI, B-IN)
- Course objectives
- The course introduces basic approaches and methods for classification
of problems with respect to their algorithmic solvability. It explores
theoretical and practical limits of computers usage and consequences
these limitations have for advancing information technologies.
At the end of the course the students will be able: to understand basic notions of computability and complexity; to understand the main techniques used to classify problems (reductions, diagonalisation, closure properties) and to apply them in some simple cases. - Learning outcomes
- After enrolling the course student will be able to:
- use asymptotic notation, both actively and passively;
- explain difference between complexity of an algorith and of a problem.;
- independently decid to which complexity class given problem belongs;
- do practical decisions based on a complexity classification of a paticular problem;
- explain that some problems are not computable, give examples of such problems;
- explain the difference between various classes of not-computable problems; - Syllabus
- Algorithms and models of computation. Church thesis.
- Classification of problems. Decidable, undecidable and partially decidable problems. Computable functions.
- Closure properties. Rice theorems.
- Computational complexity. Feasible and unfeasible problems. Polynomial computational thesis.
- Reduction a completeness in problem classes. Many-one reduction and polynomial reduction. Complete problems with respect to decidability, NP-complete problems. Applications.
- Literature
- KOZEN, Dexter C. Automata and computability. New York: Springer, 1997, xiii, 400. ISBN 0387949070. info
- SIPSER, Michael. Introduction to the theory of computation. Boston: PWS Publishing Company, 1997, xv, 396 s. ISBN 0-534-94728-X. info
- BOVET, D. and Pierluigi CRESCENZI. Introduction to the theory of complexity. New York: Prentice-Hall, 1994, xi, 282 s. ISBN 0-13-915380-2. info
- KFOURY, A. J., Robert N. MOLL and Michael A. ARBIB. A programming approach to computability. New York: Springer-Verlag, 1982, viii, 251. ISBN 0-387-90743-2. info
- Teaching methods
- lectures, homeworks, drills
- Assessment methods
- The course has a form of a lecture with a seminar. During the term students are assigned homeworks. The course is concluded by the written exam. Student can attend the final exam providing she/he has acquired given number of points from homeworks.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Enrolment Statistics (Autumn 2018, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2018/IB107