FI:IA080 Seminar on Knowledge Discovery - Course Information
IA080 Seminar on Knowledge Discovery
Faculty of InformaticsAutumn 2021
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: k (colloquium). Other types of completion: z (credit).
- Teacher(s)
- doc. RNDr. Lubomír Popelínský, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Lubomír Popelínský, Ph.D.
Department of Machine Learning and Data Processing – Faculty of Informatics
Contact Person: doc. RNDr. Lubomír Popelínský, Ph.D.
Supplier department: Department of Machine Learning and Data Processing – Faculty of Informatics - Timetable
- Tue 14. 9. to Tue 7. 12. Tue 14:00–15:50 A220
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 15 student(s).
Current registration and enrolment status: enrolled: 0/15, only registered: 0/15, only registered with preference (fields directly associated with the programme): 0/15 - fields of study / plans the course is directly associated with
- Image Processing and Analysis (programme FI, N-VIZ)
- Applied Informatics (programme FI, N-AP)
- Information Technology Security (eng.) (programme FI, N-IN)
- Information Technology Security (programme FI, N-IN)
- Bioinformatics and systems biology (programme FI, N-UIZD)
- Bioinformatics (programme FI, N-AP)
- Computer Games Development (programme FI, N-VIZ_A)
- Computer Graphics and Visualisation (programme FI, N-VIZ_A)
- Computer Networks and Communications (programme FI, N-PSKB_A)
- Cybersecurity Management (programme FI, N-RSSS_A)
- Formal analysis of computer systems (programme FI, N-TEI)
- Graphic design (programme FI, N-VIZ)
- Graphic Design (programme FI, N-VIZ_A)
- Hardware Systems (programme FI, N-PSKB_A)
- Hardware systems (programme FI, N-PSKB)
- Image Processing and Analysis (programme FI, N-VIZ_A)
- Information security (programme FI, N-PSKB)
- Information Systems (programme FI, N-IN)
- Informatics (eng.) (programme FI, D-IN4)
- Informatics (programme FI, D-IN4)
- Informatics (programme FI, N-IN)
- Information Security (programme FI, N-PSKB_A)
- Quantum and Other Nonclassical Computational Models (programme FI, N-TEI)
- Mathematical Informatics (programme FI, B-IN)
- Parallel and Distributed Systems (programme FI, N-IN)
- Computer graphics and visualisation (programme FI, N-VIZ)
- Computer Graphics (programme FI, N-IN)
- Computer Networks and Communication (programme FI, N-IN)
- Computer Networks and Communications (programme FI, N-PSKB)
- Computer Systems and Technologies (eng.) (programme FI, D-IN4)
- Computer Systems and Technologies (programme FI, D-IN4)
- Computer Systems (programme FI, N-IN)
- Principles of programming languages (programme FI, N-TEI)
- Embedded Systems (eng.) (programme FI, N-IN)
- Embedded Systems (programme FI, N-IN)
- Cybersecurity management (programme FI, N-RSSS)
- Services development management (programme FI, N-RSSS)
- Software Systems Development Management (programme FI, N-RSSS)
- Services Development Management (programme FI, N-RSSS_A)
- Service Science, Management and Engineering (eng.) (programme FI, N-AP)
- Service Science, Management and Engineering (programme FI, N-AP)
- Social Informatics (programme FI, B-AP)
- Software Systems Development Management (programme FI, N-RSSS_A)
- Software Systems (programme FI, N-PSKB_A)
- Software systems (programme FI, N-PSKB)
- Machine learning and artificial intelligence (programme FI, N-UIZD)
- Theoretical Informatics (programme FI, N-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, N-SS) (2)
- Artificial Intelligence and Natural Language Processing (programme FI, N-IN)
- Computer Games Development (programme FI, N-VIZ)
- Processing and analysis of large-scale data (programme FI, N-UIZD)
- Image Processing (programme FI, N-AP)
- Natural language processing (programme FI, N-UIZD)
- Course objectives
- At the end of the course students should be able to understand scientific works in the area of machine learning and knowledge discovery in data and use it in their work. They will be able to evaluate contributions of such research studies.
- Learning outcomes
- A student will be able
- to understand research papers from machine learning and data mining;
- of critical reading of such papers;
- to prepare and present a lecture on advanced methods of data science. - Syllabus
- The seminar is focused on machine learning and theory and practice of knowledge discovery in various data sources. Program of the seminar contains also contributions of teachers and PhD. students of the Knowldge Discovery Laboratory, as well as other laboratories, on advanced topics of knowledge discovery.
- Literature
- Teaching methods
- Presentations by staff members and PhD. students. Study of research papers and presentation of advanced methods for machine learning and data mining.
- Assessment methods
- Presentation of an advanced topic from machine learning, data mining and knowledge discovery, a final report.
- Language of instruction
- Czech
- Further Comments
- The course is taught each semester.
- Teacher's information
- http://www.fi.muni.cz/kd/kdd_sem.html
- Enrolment Statistics (Autumn 2021, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2021/IA080