FI:IV054 Cryptography and C.Protocols - Course Information
IV054 Coding, Cryptography and Cryptographic Protocols
Faculty of InformaticsAutumn 2021
- Extent and Intensity
- 2/1/2. 5 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- prof. RNDr. Jozef Gruska, DrSc. (lecturer)
RNDr. Lukáš Boháč (seminar tutor)
RNDr. Matej Pivoluska, Ph.D. (seminar tutor)
Mgr. Libor Caha, PhD. (assistant)
Mgr. Luděk Matyska (assistant)
Mgr. Henrieta Micheľová (assistant)
Mgr. Roman Oravec (assistant)
Mgr. Anh Minh Tran (assistant) - Guaranteed by
- prof. RNDr. Jozef Gruska, DrSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Jozef Gruska, DrSc.
Supplier department: Department of Computer Science – Faculty of Informatics - Timetable
- Wed 15. 9. to Wed 8. 12. Wed 10:00–11:50 D2
- Timetable of Seminar Groups:
IV054/SK: Wed 15. 9. to Wed 8. 12. Wed 18:00–19:50 A318, M. Pivoluska - Prerequisites
- !NOW( IA174 Fundaments of Cryptography ) && ! IA174 Fundaments of Cryptography
Basics of linear algebra and o discrete mathematics, see also Appendix in http://www.fi.muni.cz/usr/gruska/crypto21 - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Image Processing and Analysis (programme FI, N-VIZ)
- Applied Informatics (programme FI, B-AP)
- Applied Informatics (programme FI, N-AP)
- Information Technology Security (eng.) (programme FI, N-IN)
- Information Technology Security (programme FI, N-IN)
- Bioinformatics and systems biology (programme FI, N-UIZD)
- Bioinformatics (programme FI, B-AP)
- Bioinformatics (programme FI, N-AP)
- Computer Games Development (programme FI, N-VIZ_A)
- Computer Graphics and Visualisation (programme FI, N-VIZ_A)
- Computer Networks and Communications (programme FI, N-PSKB_A)
- Cybersecurity Management (programme FI, N-RSSS_A)
- Formal analysis of computer systems (programme FI, N-TEI)
- Graphic design (programme FI, N-VIZ)
- Graphic Design (programme FI, N-VIZ_A)
- Hardware Systems (programme FI, N-PSKB_A)
- Hardware systems (programme FI, N-PSKB)
- Image Processing and Analysis (programme FI, N-VIZ_A)
- Information security (programme FI, N-PSKB)
- Information Systems (programme FI, N-IN)
- Informatics with another discipline (programme FI, B-EB)
- Informatics with another discipline (programme FI, B-FY)
- Informatics with another discipline (programme FI, B-GE)
- Informatics with another discipline (programme FI, B-GK)
- Informatics with another discipline (programme FI, B-CH)
- Informatics with another discipline (programme FI, B-IO)
- Informatics with another discipline (programme FI, B-MA)
- Informatics with another discipline (programme FI, B-TV)
- Informatics (eng.) (programme FI, D-IN4)
- Informatics (programme FI, D-IN4)
- Information Security (programme FI, N-PSKB_A)
- Quantum and Other Nonclassical Computational Models (programme FI, N-TEI)
- Mathematical Informatics (programme FI, B-IN)
- Parallel and Distributed Systems (programme FI, B-IN)
- Parallel and Distributed Systems (programme FI, N-IN)
- Computer graphics and visualisation (programme FI, N-VIZ)
- Computer Graphics and Image Processing (programme FI, B-IN)
- Computer Graphics (programme FI, N-IN)
- Computer Networks and Communication (programme FI, B-IN)
- Computer Networks and Communication (programme FI, N-IN)
- Computer Networks and Communications (programme FI, N-PSKB)
- Computer Systems and Technologies (eng.) (programme FI, D-IN4)
- Computer Systems and Technologies (programme FI, D-IN4)
- Computer Systems and Data Processing (programme FI, B-IN)
- Computer Systems (programme FI, N-IN)
- Principles of programming languages (programme FI, N-TEI)
- Embedded Systems (eng.) (programme FI, N-IN)
- Programmable Technical Structures (programme FI, B-IN)
- Embedded Systems (programme FI, N-IN)
- Cybersecurity management (programme FI, N-RSSS)
- Services development management (programme FI, N-RSSS)
- Software Systems Development Management (programme FI, N-RSSS)
- Services Development Management (programme FI, N-RSSS_A)
- Service Science, Management and Engineering (eng.) (programme FI, N-AP)
- Service Science, Management and Engineering (programme FI, N-AP)
- Social Informatics (programme FI, B-AP)
- Software Systems Development Management (programme FI, N-RSSS_A)
- Software Systems (programme FI, N-PSKB_A)
- Software systems (programme FI, N-PSKB)
- Machine learning and artificial intelligence (programme FI, N-UIZD)
- Theoretical Informatics (programme FI, N-IN)
- Teacher of Informatics and IT administrator (programme FI, N-UCI)
- Informatics for secondary school teachers (programme FI, N-UCI) (2)
- Upper Secondary School Teacher Training in Informatics (programme FI, N-SS) (2)
- Artificial Intelligence and Natural Language Processing (programme FI, B-IN)
- Artificial Intelligence and Natural Language Processing (programme FI, N-IN)
- Computer Games Development (programme FI, N-VIZ)
- Processing and analysis of large-scale data (programme FI, N-UIZD)
- Image Processing (programme FI, N-AP)
- Natural language processing (programme FI, N-UIZD)
- Course objectives
- The lecture deals with the basic methods to solve three key problems of the transmission of information - transmission, storing, hiding. All three problems are of large practical importance and their solutions are often based on elegant and deep theoretical results. To verify, for ambitious students, their capability to work hard to be successful in very competitive informatics + mathematics environment.
- Learning outcomes
- On successful completion of the course students should be able to: understand problems of the theory of error-correcting codes and their solutions; understand basic principles and results of the theory of secure communications; principles and problems of basic cryptosystems for encryption (both secret and public key), digital signatures and authentication; methods to create core cryptographic protocols primitives; analyze and practically use cryptosystems and such primitives as eliptic curves, hash-functions and secret-sharing methods. Basic methods for hiding information presented in steganography and watermarking. Finally, (s)he gets familiar in using quantum information processing tools and laws in general and in application to cryptography in particular. He gets also familiar with development and use cryptographic machines and with history of cryptography be experienced in methods of quantum cryptography and steganography
- Syllabus
- Coding theory and modern cryptography are rich on deep, elegant, interesting and practically very important ideas, methods, and systems. Main concepts of modern cryptography are closely connected with fundamental concepts of theoretical informatics. Current cryptography and its methods and systems are of key importance for modern communication and information systems. Basic knowledge of coding methods and of modern cryptography are necessary for each graduate of informatics.
- Lecture will be rich also on examples and experiences from a very rich and interesting history of cryptography.
- Basic concepts of coding theory and linear codes
- Cyclic and channel codes, very modern coding methods
- Classical cryptography
- Public-key cryptosystems, knapsack, RSA, public key exchange
- Other cryptosystems and cryptographic primitives
- Digital signatures
- Elliptic curves in cryptography and integer factorization
- Basic cryptographic protocols
- Authentication, identification, secret sharing, e-commerce
- Steganography and watermarking
- From crypto-theory to crypto-practice
- Quantum cryptographic protocols
- Machines and history of cryptography
- Literature
- GRUSKA, Jozef. Quantum computing. London: McGraw-Hill Companies, 1999, xv, 439. ISBN 0077095030. info
- GRUSKA, Jozef. Foundations of computing. London: International Thompson Computer Press, 1997, xv, 716 s. ISBN 1-85032-243-0. info
- SCHNEIER, Bruce. Applied cryptography : protocols, algorithms, and source code in C. New York: John Wiley & Sons, 1996, xxiii, 758. ISBN 0471128457. info
- SALOMAA, Arto. Public-key cryptography. 2nd ed. Berlin: Springer, 1996, x, 271. ISBN 3540613560. info
- STINSON, Douglas Robert. Cryptography :theory and practice. Boca Raton: CRC Press, 1995, 434 s. ISBN 0-8493-8521-0. info
- Teaching methods
- Lectures, in English Tutorials: one in English, one in Czech/Slovak Homeworks. 5-6 sets of 6-8 exercises chosen and evaluated by members of CRYPTO_team composed mostly of some of best students of previous IV054 lectures.
- Assessment methods
- Oral exam. Each student will get 5 questions. Number of question a student has to respond will depend on the number of points received for homeworks. Each student will get automatically A in case (s)he received number of points from exercises <= 85% of MAX - maximal number of points a studen got from exercises. Automatically a student gets B, with an easy way to get A, in case the number of points received is in interval (75,85)% og Max. a ....
- Language of instruction
- English
- Further comments (probably available only in Czech)
- Study Materials
The course is taught last offered.
General note: Výukové materiály (včetně průsvitek) výhradně v angličtině. - Listed among pre-requisites of other courses
- Teacher's information
- http://www.fi.muni.cz/usr/gruska/crypto19
Teaching materials: 1. Detailed slides of all lectures. Each chapter will consists of a (i) short Prologue, (ii) basic materials and an (iii) Appendix - for much demanding students 2. Appendix of fundamental discrete math and linear algebra - 45 pages 3. Two lecture notes of solved examples (at least 1000 in each one) 4. Posted solutions of homeworks.
- Enrolment Statistics (recent)
- Permalink: https://is.muni.cz/course/fi/autumn2021/IV054