IV054 Coding, Cryptography and Cryptographic Protocols

Faculty of Informatics
Autumn 2021
Extent and Intensity
2/1/2. 5 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
Teacher(s)
prof. RNDr. Jozef Gruska, DrSc. (lecturer)
RNDr. Lukáš Boháč (seminar tutor)
RNDr. Matej Pivoluska, Ph.D. (seminar tutor)
Mgr. Libor Caha, PhD. (assistant)
Mgr. Luděk Matyska (assistant)
Mgr. Henrieta Micheľová (assistant)
Mgr. Roman Oravec (assistant)
Mgr. Anh Minh Tran (assistant)
Guaranteed by
prof. RNDr. Jozef Gruska, DrSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Jozef Gruska, DrSc.
Supplier department: Department of Computer Science – Faculty of Informatics
Timetable
Wed 15. 9. to Wed 8. 12. Wed 10:00–11:50 D2
  • Timetable of Seminar Groups:
IV054/EN: Wed 15. 9. to Wed 8. 12. Wed 14:00–15:50 B410, M. Pivoluska
IV054/SK: Wed 15. 9. to Wed 8. 12. Wed 18:00–19:50 A318, M. Pivoluska
Prerequisites
!NOW( IA174 Fundaments of Cryptography ) && ! IA174 Fundaments of Cryptography
Basics of linear algebra and o discrete mathematics, see also Appendix in http://www.fi.muni.cz/usr/gruska/crypto21
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The lecture deals with the basic methods to solve three key problems of the transmission of information - transmission, storing, hiding. All three problems are of large practical importance and their solutions are often based on elegant and deep theoretical results. To verify, for ambitious students, their capability to work hard to be successful in very competitive informatics + mathematics environment.
Learning outcomes
On successful completion of the course students should be able to: understand problems of the theory of error-correcting codes and their solutions; understand basic principles and results of the theory of secure communications; principles and problems of basic cryptosystems for encryption (both secret and public key), digital signatures and authentication; methods to create core cryptographic protocols primitives; analyze and practically use cryptosystems and such primitives as eliptic curves, hash-functions and secret-sharing methods. Basic methods for hiding information presented in steganography and watermarking. Finally, (s)he gets familiar in using quantum information processing tools and laws in general and in application to cryptography in particular. He gets also familiar with development and use cryptographic machines and with history of cryptography be experienced in methods of quantum cryptography and steganography
Syllabus
  • Coding theory and modern cryptography are rich on deep, elegant, interesting and practically very important ideas, methods, and systems. Main concepts of modern cryptography are closely connected with fundamental concepts of theoretical informatics. Current cryptography and its methods and systems are of key importance for modern communication and information systems. Basic knowledge of coding methods and of modern cryptography are necessary for each graduate of informatics.
  • Lecture will be rich also on examples and experiences from a very rich and interesting history of cryptography.
  • Basic concepts of coding theory and linear codes
  • Cyclic and channel codes, very modern coding methods
  • Classical cryptography
  • Public-key cryptosystems, knapsack, RSA, public key exchange
  • Other cryptosystems and cryptographic primitives
  • Digital signatures
  • Elliptic curves in cryptography and integer factorization
  • Basic cryptographic protocols
  • Authentication, identification, secret sharing, e-commerce
  • Steganography and watermarking
  • From crypto-theory to crypto-practice
  • Quantum cryptographic protocols
  • Machines and history of cryptography
Literature
  • GRUSKA, Jozef. Quantum computing. London: McGraw-Hill Companies, 1999, xv, 439. ISBN 0077095030. info
  • GRUSKA, Jozef. Foundations of computing. London: International Thompson Computer Press, 1997, xv, 716 s. ISBN 1-85032-243-0. info
  • SCHNEIER, Bruce. Applied cryptography : protocols, algorithms, and source code in C. New York: John Wiley & Sons, 1996, xxiii, 758. ISBN 0471128457. info
  • SALOMAA, Arto. Public-key cryptography. 2nd ed. Berlin: Springer, 1996, x, 271. ISBN 3540613560. info
  • STINSON, Douglas Robert. Cryptography :theory and practice. Boca Raton: CRC Press, 1995, 434 s. ISBN 0-8493-8521-0. info
Teaching methods
Lectures, in English Tutorials: one in English, one in Czech/Slovak Homeworks. 5-6 sets of 6-8 exercises chosen and evaluated by members of CRYPTO_team composed mostly of some of best students of previous IV054 lectures.
Assessment methods
Oral exam. Each student will get 5 questions. Number of question a student has to respond will depend on the number of points received for homeworks. Each student will get automatically A in case (s)he received number of points from exercises <= 85% of MAX - maximal number of points a studen got from exercises. Automatically a student gets B, with an easy way to get A, in case the number of points received is in interval (75,85)% og Max. a ....
Language of instruction
English
Further comments (probably available only in Czech)
Study Materials
The course is taught last offered.
General note: Výukové materiály (včetně průsvitek) výhradně v angličtině.
Listed among pre-requisites of other courses
Teacher's information
http://www.fi.muni.cz/usr/gruska/crypto19
Teaching materials: 1. Detailed slides of all lectures. Each chapter will consists of a (i) short Prologue, (ii) basic materials and an (iii) Appendix - for much demanding students 2. Appendix of fundamental discrete math and linear algebra - 45 pages 3. Two lecture notes of solved examples (at least 1000 in each one) 4. Posted solutions of homeworks.
The course is also listed under the following terms Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020.
  • Enrolment Statistics (recent)
  • Permalink: https://is.muni.cz/course/fi/autumn2021/IV054