FI:IV111 Probability in CS - Course Information
IV111 Probability in Computer Science
Faculty of InformaticsAutumn 2022
- Extent and Intensity
- 2/2/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Vojtěch Řehák, Ph.D. (lecturer)
Mgr. Martin Kurečka (seminar tutor)
Mgr. Ing. Bc. Přemysl Till (seminar tutor)
Mgr. Libor Caha, PhD. (assistant)
RNDr. David Klaška (assistant) - Guaranteed by
- doc. RNDr. Vojtěch Řehák, Ph.D.
Department of Computer Science – Faculty of Informatics
Supplier department: Department of Computer Science – Faculty of Informatics - Timetable
- Mon 10:00–11:50 A217
- Timetable of Seminar Groups:
IV111/02: Mon 18:00–19:50 A218, P. Till
IV111/03: Tue 16:00–17:50 A217, M. Kurečka
IV111/04: Thu 12:00–13:50 A318, V. Řehák - Prerequisites
- Knowledge of basic discrete mathematics (e.g. as presented in the course IB000).
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Image Processing and Analysis (programme FI, N-VIZ)
- Applied Informatics (programme FI, B-AP)
- Applied Informatics (programme FI, N-AP)
- Information Technology Security (eng.) (programme FI, N-IN)
- Information Technology Security (programme FI, N-IN)
- Bioinformatics and systems biology (programme FI, N-UIZD)
- Bioinformatics (programme FI, B-AP)
- Bioinformatics (programme FI, N-AP)
- Computer Games Development (programme FI, N-VIZ_A)
- Computer Graphics and Visualisation (programme FI, N-VIZ_A)
- Computer Networks and Communications (programme FI, N-PSKB_A)
- Cybersecurity Management (programme FI, N-RSSS_A)
- Formal analysis of computer systems (programme FI, N-TEI)
- Graphic design (programme FI, N-VIZ)
- Graphic Design (programme FI, N-VIZ_A)
- Hardware Systems (programme FI, N-PSKB_A)
- Hardware systems (programme FI, N-PSKB)
- Image Processing and Analysis (programme FI, N-VIZ_A)
- Information security (programme FI, N-PSKB)
- Information Systems (programme FI, N-IN)
- Informatics with another discipline (programme FI, B-EB)
- Informatics with another discipline (programme FI, B-FY)
- Informatics with another discipline (programme FI, B-GE)
- Informatics with another discipline (programme FI, B-GK)
- Informatics with another discipline (programme FI, B-CH)
- Informatics with another discipline (programme FI, B-IO)
- Informatics with another discipline (programme FI, B-MA)
- Informatics with another discipline (programme FI, B-TV)
- Informatics (programme FI, B-INF) (2)
- Public Administration Informatics (programme FI, B-AP)
- Informatics in education (programme FI, B-IVV) (2)
- Information Security (programme FI, N-PSKB_A)
- Quantum and Other Nonclassical Computational Models (programme FI, N-TEI)
- Mathematical Informatics (programme FI, B-IN)
- Parallel and Distributed Systems (programme FI, B-IN)
- Parallel and Distributed Systems (programme FI, N-IN)
- Computer graphics and visualisation (programme FI, N-VIZ)
- Computer Graphics and Image Processing (programme FI, B-IN)
- Computer Graphics (programme FI, N-IN)
- Computer Networks and Communication (programme FI, B-IN)
- Computer Networks and Communication (programme FI, N-IN)
- Computer Networks and Communications (programme FI, N-PSKB)
- Computer Systems and Data Processing (programme FI, B-IN)
- Computer Systems (programme FI, N-IN)
- Principles of programming languages (programme FI, N-TEI)
- Programming and development (programme FI, B-PVA)
- Embedded Systems (eng.) (programme FI, N-IN)
- Programmable Technical Structures (programme FI, B-IN)
- Embedded Systems (programme FI, N-IN)
- Cybersecurity management (programme FI, N-RSSS)
- Services development management (programme FI, N-RSSS)
- Software Systems Development Management (programme FI, N-RSSS)
- Services Development Management (programme FI, N-RSSS_A)
- Service Science, Management and Engineering (eng.) (programme FI, N-AP)
- Service Science, Management and Engineering (programme FI, N-AP)
- Social Informatics (programme FI, B-AP)
- Software Systems Development Management (programme FI, N-RSSS_A)
- Software Systems (programme FI, N-PSKB_A)
- Software systems (programme FI, N-PSKB)
- Machine learning and artificial intelligence (programme FI, N-UIZD)
- Theoretical Informatics (programme FI, N-IN)
- Teacher of Informatics and IT administrator (programme FI, N-UCI)
- Informatics for secondary school teachers (programme FI, N-UCI) (2)
- Upper Secondary School Teacher Training in Informatics (programme FI, N-SS) (2)
- Artificial Intelligence and Natural Language Processing (programme FI, B-IN)
- Artificial Intelligence and Natural Language Processing (programme FI, N-IN)
- Computer Games Development (programme FI, N-VIZ)
- Processing and analysis of large-scale data (programme FI, N-UIZD)
- Image Processing (programme FI, N-AP)
- Natural language processing (programme FI, N-UIZD)
- Course objectives
- At the end of the course student should have a broad knowledge and an ability of independent study of problems based on the probability theory and its computer science applications. Will be able to apply the results of the probability theory in practical examples. Should be able to learn independently new problems requiring knowledge of probability theory. Will be able to characterise basic principles of data compression and error correction. Should be able to apply information theory results in practice.
- Learning outcomes
- Student is able: to define basic terms of the mentioned topics (e.g., random variable, expectation, variance, random process, Markov chain, channel capacity, code rate); to explain meaning on the terms on practical examples; to solve simple examples e.g. using linearity o expectation; to provide basic analysis on both discrete- and continuous-time Markov chains; to compute (conditional) expectation, mutual information, and entropy random variables with given probability distribution; to demonstrate basic proof mentioned during lectures.
- Syllabus
- Probability. Discrete probabilistic space.
- Random variable and its applications. Expectation and variation.
- Markov and Chebyshev inequalities. Chernoff bounds. Weak and strong law of large numbers.
- Random processes. Markov processes.
- Entropy. Information.
- Applications in computer science (information theory, coding theory, cryptography etc).
- Literature
- MITZENMACHER, Michael and Eli UPFAL. Probability and computing : an introduction to randomized algorithms and probabilistic analysis. New York: Cambridge University Press, 2005, xvi, 352. ISBN 0521835402. info
- GRIMMETT, Geoffrey R. and David STIRZAKER. Probability and random processes. 3rd ed. Oxford: Oxford University Press, 2001, xii, 596 s. ISBN 0-19-857222-0. info
- TRIVEDI, Kishor Shridharbhai. Probability and statistics with reliability, queuing, and computer science applications. 2nd ed. New York: Wiley, 2002, xv, 830. ISBN 0471333417. info
- COVER, T. M. and Joy A. THOMAS. Elements of information theory. 2nd ed. Hoboken, N.J.: Wiley-Interscience, 2006, xxiii, 748. ISBN 0471241954. info
- STINSON, Douglas Robert. Cryptography : theory and practice. 3rd ed. Boca Raton: CRC Press, 2006, 593 s. ISBN 1584885084. info
- FELLER, William. An introduction to probability theory and its applications. 3rd ed. [New York]: John Wiley & Sons, 1968, xviii, 509. ISBN 9780471257080. info
- Teaching methods
- Theoretical lectures and practical examples in tutorials.
- Assessment methods
- Combination of a written test and an oral exam. Student successful in the written test should pass the oral exam in order to achieve grade C or better.
- Language of instruction
- English
- Further Comments
- Study Materials
The course is taught annually.
- Enrolment Statistics (Autumn 2022, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2022/IV111