PA153 Natural Language Processing
Faculty of InformaticsAutumn 2022
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. Mgr. Pavel Rychlý, Ph.D. (lecturer)
- Guaranteed by
- prof. PhDr. Karel Pala, CSc.
Department of Machine Learning and Data Processing – Faculty of Informatics
Contact Person: doc. Mgr. Pavel Rychlý, Ph.D.
Supplier department: Department of Machine Learning and Data Processing – Faculty of Informatics - Timetable
- Fri 8:00–9:50 A217
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Image Processing and Analysis (programme FI, N-VIZ)
- Applied Informatics (programme FI, N-AP)
- Information Technology Security (eng.) (programme FI, N-IN)
- Information Technology Security (programme FI, N-IN)
- Bioinformatics and systems biology (programme FI, N-UIZD)
- Bioinformatics (programme FI, N-AP)
- Computer Games Development (programme FI, N-VIZ_A)
- Computer Graphics and Visualisation (programme FI, N-VIZ_A)
- Computer Networks and Communications (programme FI, N-PSKB_A)
- Cybersecurity Management (programme FI, N-RSSS_A)
- Discrete algorithms and models (programme FI, N-TEI)
- Formal analysis of computer systems (programme FI, N-TEI)
- Graphic design (programme FI, N-VIZ)
- Graphic Design (programme FI, N-VIZ_A)
- Hardware Systems (programme FI, N-PSKB_A)
- Hardware systems (programme FI, N-PSKB)
- Image Processing and Analysis (programme FI, N-VIZ_A)
- Information security (programme FI, N-PSKB)
- Information Systems (programme FI, N-IN)
- Informatics (eng.) (programme FI, D-IN4)
- Informatics (programme FI, D-IN4)
- Information Security (programme FI, N-PSKB_A)
- Quantum and Other Nonclassical Computational Models (programme FI, N-TEI)
- Parallel and Distributed Systems (programme FI, N-IN)
- Computer graphics and visualisation (programme FI, N-VIZ)
- Computer Graphics (programme FI, N-IN)
- Computational Linguistics (programme FF, N-PLIN_) (3)
- Computer Networks and Communication (programme FI, N-IN)
- Computer Networks and Communications (programme FI, N-PSKB)
- Computer Systems and Technologies (eng.) (programme FI, D-IN4)
- Computer Systems and Technologies (programme FI, D-IN4)
- Computer Systems (programme FI, N-IN)
- Principles of programming languages (programme FI, N-TEI)
- Embedded Systems (eng.) (programme FI, N-IN)
- Embedded Systems (programme FI, N-IN)
- Cybersecurity management (programme FI, N-RSSS)
- Services development management (programme FI, N-RSSS)
- Software Systems Development Management (programme FI, N-RSSS)
- Services Development Management (programme FI, N-RSSS_A)
- Service Science, Management and Engineering (eng.) (programme FI, N-AP)
- Service Science, Management and Engineering (programme FI, N-AP)
- Social Informatics (programme FI, B-AP)
- Software Systems Development Management (programme FI, N-RSSS_A)
- Software Systems (programme FI, N-PSKB_A)
- Software systems (programme FI, N-PSKB)
- Machine learning and artificial intelligence (programme FI, N-UIZD)
- Theoretical Informatics (programme FI, N-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, N-SS) (2)
- Artificial Intelligence and Natural Language Processing (programme FI, N-IN)
- Computer Games Development (programme FI, N-VIZ)
- Processing and analysis of large-scale data (programme FI, N-UIZD)
- Image Processing (programme FI, N-AP)
- Natural language processing (programme FI, N-UIZD)
- Course objectives
- The course offers a deeper knowledge about the natural language processing using statistical algorithms and/or deep learning of neural networks. Working examples and applications are provided to illustrate selected methods.
- Learning outcomes
- The students will learn about practical processing of texts.
The students will be able to:
- understand text processing methods;
- design algorithms for classification of text, documents, sentences;
- understand the structure of question answering and machine translation systems;
- evaluate the quality of the natural language processing applications. - Syllabus
- text processing, tokenization, corpora
- word counts, n-grams, language modeling
- text classification
- information extraction
- tagging, parsing
- information retrieval, question answering
- parallel text, word alignment, machine translation
- continues spaces representations
- recurent neural networks for language modeling
- sequence processing, transformers
- neural machine translation
- natural language generation, huge language models
- Literature
- recommended literature
- GOODFELLOW, Ian, Yoshua BENGIO and Aaron COURVILLE. Deep learning. London, England: MIT Press, 2016, xxii, 775. ISBN 9780262035613. info
- JURAFSKY, Dan and James H. MARTIN. Speech and language processing : an introduction to natural language processing, computational linguistics and speech recognition. 2nd ed. New Jersey: Pearson, 2009, 1024 s. ISBN 9780135041963. info
- Teaching methods
- Teaching is performed in the form of oral lectures and seminars, in which the slides and demos of the relevant software tools are combined. Students work out homeworks or smaller projects. At the appropriate points of the teaching the open dialog between a teacher and students is used.
- Assessment methods
- It is possible to get 50 points at the final written test. At least 25 points are needed to pass. It is possible to get at most 25 points from the optional home works or projects.
- Language of instruction
- English
- Further Comments
- Study Materials
The course is taught annually.
- Enrolment Statistics (Autumn 2022, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2022/PA153