FI:IB107 Computability and Complexity - Course Information
IB107 Computability and Complexity
Faculty of InformaticsAutumn 2024
- Extent and Intensity
- 2/1/0. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
In-person direct teaching - Teacher(s)
- prof. RNDr. Jan Strejček, Ph.D. (lecturer)
Mgr. Paulína Ayaziová (seminar tutor)
RNDr. Martin Jonáš, Ph.D. (seminar tutor)
Bc. David Dokoupil (assistant)
Bc. Ondřej Huvar (assistant)
RNDr. David Klaška (assistant)
Mgr. Martin Kurečka (assistant)
Matúš Miškuf (assistant)
Bc. Jindřich Sedláček (assistant)
RNDr. Vojtěch Suchánek (assistant)
Bc. Jakub Šárník (assistant)
Bc. Adéla Štěpková (assistant) - Guaranteed by
- prof. RNDr. Jan Strejček, Ph.D.
Department of Computer Science – Faculty of Informatics
Supplier department: Department of Computer Science – Faculty of Informatics - Timetable
- Mon 23. 9. to Mon 16. 12. Mon 10:00–11:50 D1
- Timetable of Seminar Groups:
IB107/02: Tue 24. 9. to Tue 17. 12. Tue 15:00–15:50 A218, J. Strejček
IB107/03: Tue 24. 9. to Tue 17. 12. Tue 13:00–13:50 A218, M. Jonáš
IB107/04: Tue 24. 9. to Tue 17. 12. Tue 12:00–12:50 A218, M. Jonáš
IB107/05: Tue 24. 9. to Tue 17. 12. Tue 16:00–16:50 A218, P. Ayaziová - Prerequisites (in Czech)
- IB005 Formal languages and Automata
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Image Processing and Analysis (programme FI, N-VIZ)
- Bioinformatics and systems biology (programme FI, N-UIZD)
- Computer Games Development (programme FI, N-VIZ_A)
- Computer Graphics and Visualisation (programme FI, N-VIZ_A)
- Computer Networks and Communications (programme FI, N-PSKB_A)
- Cybersecurity Management (programme FI, N-RSSS_A)
- Formal analysis of computer systems (programme FI, N-TEI)
- Graphic design (programme FI, N-VIZ)
- Graphic Design (programme FI, N-VIZ_A)
- Hardware Systems (programme FI, N-PSKB_A)
- Hardware systems (programme FI, N-PSKB)
- Image Processing and Analysis (programme FI, N-VIZ_A)
- Information security (programme FI, N-PSKB)
- Informatics (programme FI, B-INF) (2)
- Informatics in education (programme FI, B-IVV) (2)
- Information Security (programme FI, N-PSKB_A)
- Quantum and Other Nonclassical Computational Models (programme FI, N-TEI)
- Computer graphics and visualisation (programme FI, N-VIZ)
- Computer Networks and Communications (programme FI, N-PSKB)
- Principles of programming languages (programme FI, N-TEI)
- Programming and development (programme FI, B-PVA)
- Cybersecurity management (programme FI, N-RSSS)
- Services development management (programme FI, N-RSSS)
- Software Systems Development Management (programme FI, N-RSSS)
- Services Development Management (programme FI, N-RSSS_A)
- Software Systems Development Management (programme FI, N-RSSS_A)
- Software systems (programme FI, N-PSKB)
- Machine learning and artificial intelligence (programme FI, N-UIZD)
- Teacher of Informatics and IT administrator (programme FI, N-UCI)
- Informatics for secondary school teachers (programme FI, N-UCI) (2)
- Computer Games Development (programme FI, N-VIZ)
- Processing and analysis of large-scale data (programme FI, N-UIZD)
- Natural language processing (programme FI, N-UIZD)
- Course objectives
- The course introduces basic approaches and methods for classification of problems with respect to their algorithmic solvability. It explores theoretical and practical limits of the use of computers and the implications that these limitations have for the developent of information technology.
At the end of the course, the students will be able: to understand basic notions of computability and complexity; to understand the main techniques used to classify problems (reductions, diagonalisation, closure properties), and to apply them in some simple cases. - Learning outcomes
- After enrolling the course student will be able to:
- use asymptotic notation, both actively and passively;
- explain difference between complexity of an algorithm and of a problem;
- independently decide to which complexity class a given problem belongs;
- do practical decisions based on a complexity classification of a particular problem;
- explain that some problems are not computable, give examples of such problems;
- explain the difference between various classes of not-computable problems; - Syllabus
- Algorithms and models of computation. Church thesis.
- Classification of problems. Decidable, undecidable, and partially decidable problems. Computable functions.
- Closure properties. Rice theorems.
- Computational complexity. Feasible and unfeasible problems.
- Reduction and completeness in problem classes. Many-one reduction and polynomial reduction. Complete problems with respect to decidability, NP-complete problems. Applications.
- Literature
- KOZEN, Dexter C. Automata and computability. New York: Springer, 1997, xiii, 400. ISBN 0387949070. info
- SIPSER, Michael. Introduction to the theory of computation. Boston: PWS Publishing Company, 1997, xv, 396 s. ISBN 0-534-94728-X. info
- BOVET, D. and Pierluigi CRESCENZI. Introduction to the theory of complexity. New York: Prentice-Hall, 1994, xi, 282 s. ISBN 0-13-915380-2. info
- KFOURY, A. J., Robert N. MOLL and Michael A. ARBIB. A programming approach to computability. New York: Springer-Verlag, 1982, viii, 251. ISBN 0-387-90743-2. info
- Teaching methods
- lectures, support sessions, homeworks
- Assessment methods
- The course has a form of a lecture with a seminar. During the term students are assigned homeworks. The course is concluded by the written open-book exam. Student can attend the final exam providing she/he has acquired a given number of points from homeworks.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Enrolment Statistics (recent)
- Permalink: https://is.muni.cz/course/fi/autumn2024/IB107