FI:IV107 Bioinformatics I - Course Information
IV107 Bioinformatics I
Faculty of InformaticsSpring 2008
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. Ing. Matej Lexa, Ph.D. (lecturer)
RNDr. Jan Flasar, Ph.D. (assistant) - Guaranteed by
- prof. Ing. Václav Přenosil, CSc.
Department of Machine Learning and Data Processing – Faculty of Informatics - Timetable
- Tue 8:00–9:50 B204
- Prerequisites
- This is an entry course into the area of bioinformatics for students of non-biological disciplines, there are no prerequisites.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 37 fields of study the course is directly associated with, display
- Course objectives
- This course is a new applied subject available at the Faculty of Informatics. It will lead the students into the fascinating world of molecules, genes and proteins. Currently, bioinformatics is going through a period of unusual growth. Abilities to think and act as a bioinformatician (to work with large biological datasets using modern computer science methods) are needed in many areas of science and applied disciplines, especially biology, medicine and chemistry. The first part of the course will be dedicated to basics of biology necessary for someone who has not studied biology to enter the field of bioinformatics. In the second part, important biological problems that can be best tackled by computers will be studied. Lectures will be given once a week (2hrs). Written examination will be given at the end of the semester.
- Syllabus
- 1. The history and subject of bioinformatics 2. Basics of molecular biology - Organization of living matter - DNA structure and function - Protein structure and function - Evolution of genes and proteins 3. Bioinformatic data - Data sources - Common data types 4. Public sequence data and their access 5. DNA sequence analysis 6. Protein sequence analysis 7. Structural and functional data 8. Similarity searches and scoring 9. Other types of data and their analysis 10. Expression data 11. Protein digests and mass spectra 12. Literature data analysis
- Literature
- Assessment methods (in Czech)
- V průběhu semestru absolvují studenti jeden kontrolní test. Předmět bude ukončen písemní zkouškou, podmínkou připuštění ke zkoušce je absolvování kontrolního testu s hodnocením nejméně 2/3 maximálního skóre.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually. - Teacher's information
- http://www.fi.muni.cz/~lexa/iv107.html
- Enrolment Statistics (Spring 2008, recent)
- Permalink: https://is.muni.cz/course/fi/spring2008/IV107