FI:PA171 Digital Image Filtering - Course Information
PA171 Digital Image Filtering
Faculty of InformaticsSpring 2017
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. David Svoboda, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Petr Matula, Ph.D.
Department of Visual Computing – Faculty of Informatics
Contact Person: doc. RNDr. David Svoboda, Ph.D.
Supplier department: Department of Visual Computing – Faculty of Informatics - Timetable
- Tue 8:00–9:50 B411
- Timetable of Seminar Groups:
- Prerequisites
- PV131 Digital Image Processing
Knowledge of written English and calculus is required. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Information Technology Security (eng.) (programme FI, N-IN)
- Information Technology Security (programme FI, N-IN)
- Bioinformatics (programme FI, N-AP)
- Information Systems (programme FI, N-IN)
- Informatics (programme FI, N-IN)
- Parallel and Distributed Systems (programme FI, N-IN)
- Computer Graphics (programme FI, N-IN)
- Computer Networks and Communication (programme FI, N-IN)
- Computer Systems (programme FI, N-IN)
- Embedded Systems (eng.) (programme FI, N-IN)
- Embedded Systems (programme FI, N-IN)
- Service Science, Management and Engineering (eng.) (programme FI, N-AP)
- Service Science, Management and Engineering (programme FI, N-AP)
- Social Informatics (programme FI, B-AP)
- Theoretical Informatics (programme FI, N-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, N-SS) (2)
- Artificial Intelligence and Natural Language Processing (programme FI, N-IN)
- Image Processing (programme FI, N-AP)
- Course objectives
- The aim of this lecture is to introduce all the basic image transforms used in digital image processing. It covers the operations changing the image content or transforming the original data into different representation. At the end of this course, students should be able to: understand the basic principles of the image transforms; know the selected transforms; implement and apply the selected transforms; understand standard image compression algorithms; correctly resample images; use suitable image restoration algorithms.
- Syllabus
- Discrete transforms (Fourier transform, FFT, Hadamard, DCT, Wavelets)
- Image compression, Lossy/Lossless compression, JPEG, JPEG2000, MPEG
- Sampling, Resampling, Signal reconstruction, Texture filtering
- Z-transform, Recursive filtering
- Deconvolution
- Edge detection (Canny, Deriche, etc.)
- Image descriptors (Haralick, Zernike, SIFT, MPEG-7)
- Steerable filters
- Literature
- Teaching methods
- obtaining knowledge during lectures, obtaining skills by working with PC
- Assessment methods
- During semester, the students are required to solve the selected team project. The final defense of this project takes place during the last week of semester. The students must successfully pass this defense in order to be allowed to take the final exam. Final exam consists of written and oral form. The written part contains questions that verify the students' skills and experience in the given field of image processing. The oral part follows the written part. Here, the students have chance to explain or finalize those solutions from written part that are incomplete.
- Language of instruction
- English
- Further Comments
- Study Materials
The course is taught annually. - Teacher's information
- http://cbia.fi.muni.cz/teaching-activities.html
- Enrolment Statistics (Spring 2017, recent)
- Permalink: https://is.muni.cz/course/fi/spring2017/PA171