IA012 Složitost

Fakulta informatiky
jaro 2019
Rozsah
2/0. 2 kr. (plus ukončení). Ukončení: zk.
Vyučující
prof. RNDr. Ivana Černá, CSc. (přednášející)
Garance
prof. RNDr. Mojmír Křetínský, CSc.
Katedra teorie programování – Fakulta informatiky
Kontaktní osoba: prof. RNDr. Ivana Černá, CSc.
Dodavatelské pracoviště: Katedra teorie programování – Fakulta informatiky
Rozvrh
Po 14:00–15:50 D2
Předpoklady
Předpokládá se znalost základních pojmů v rozsahu přednášky IB107 Vyčíslitelnost a složitost.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Teorie výpočetní složitosti zkoumá kvantitativní vlastnosti a limity výpočetních procesů. Kurs prezentuje strukturu prostoru algoritmických problémů a rozvíjí techniky, které dovolují redukovat hledání efektivních algoritmů pro celou třídu algoritmických problémů na hledání efektivní metody pro klíčové algoritmické problémy. Teorie klasifikuje problémy podle jejich výpočetní složitosti na prakticky zvladatelné a nezvladatelné a ukazuje důvody nezvladatelnosti (praktické neřešitelnosti) problémů. Skoumá se, do jaké míry můžou posunout hranici zvladatelnosti techniky jako randomizace, aproximace a paralelní postupy řešení problémů.
Výstupy z učení
Student bude po absolvování předmětu schopen:
- aktivně používat pojem výpočetní složitosti problémů a algoritmů,
- analyzovat dolní a horní odhady složitosti,
- rozlišovat mezi prakticky řešitelnými a prakticky neřešitelnými problémy,
- definovat základní složitostní třídy a znát vztahy mezi nimi,
- vysvětlit pojem (NP) úplného problému a identifikovat úplné problémy složitostních tříd,
- popsat meze deterministických, nedeterministických, alternujících, pravděpodobnostnícha a paralelních výpočtů,
Osnova
  • Struktura a vlastnosti časových složitostních tříd. Vztah determinizmu a nedeterminizmu.
  • Struktura a vlastnosti prostorových složitostních tříd. Vztah determinizmu a nedeterminizmu.
  • Nezvladatelné problémy. Nekonečnost hierarchie složitostních tříd. Polynomiální hierarchie. Relativizace. Neuniformní výpočetní složitost.
  • Pravděpodobnostní složitostní třídy a jejich struktura. Aproximativní složitostní třídy a neaproximovatelnost.
  • Alternování a hry. Interaktivní protokoly a interaktivní důkazové systémy.
  • Techniky pro získavaní dolních odhadů složitosti. Kolmogorovská složitost.
  • Deskriptivní složitost.
Literatura
    povinná literatura
  • SIPSER, Michael. Introduction to the theory of computation. Boston: PWS Publishing Company, 1997, xv, 396 s. ISBN 0-534-94728-X. info
    doporučená literatura
  • ARORA, Sanjeev a Boaz BARAK. Computational Complexity : a modern approach. 1st pub. New York: Cambridge University Press, 2009, xxiv, 579. ISBN 9780521424264. info
  • SCHÖNING, Uwe a Randall PRUIM. Gems of theoretical computer science. Berlin: Springer, 1998, x, 320. ISBN 3540644253. info
  • PAPADIMITRIOU, Christos H. Computational complexity. Reading, Mass.: Addison Wesley Longman, 1994, xv, 523 s. ISBN 0-201-53082-1. info
Záložky
https://is.muni.cz/ln/tag/FI:IA012!
Výukové metody
teoretická příprava doplněna domácími úkoly a projekty
Metody hodnocení
V průběhu semesestru studenti samostaně řeší zadané problémy. Závěrečné hodnocení je založeno na výsledcích písemné zkoušky a na řešení zadaných problémů.
Informace učitele
https://is.muni.cz/auth/el/1433/jaro2018/IA012/index.qwarp
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2008, jaro 2009, jaro 2010, jaro 2011, jaro 2012, jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, podzim 2020, podzim 2021, podzim 2022, podzim 2023, podzim 2024.