FI:MV013 Statistics - Course Information
MV013 Statistics for Computer Science
Faculty of InformaticsSpring 2019
- Extent and Intensity
- 2/2/0. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D. (lecturer)
Mgr. Markéta Janošová (seminar tutor) - Guaranteed by
- doc. PaedDr. RNDr. Stanislav Katina, Ph.D.
Faculty of Informatics
Supplier department: Faculty of Science - Timetable
- Tue 19. 2. to Tue 14. 5. Tue 10:00–11:50 B204
- Timetable of Seminar Groups:
MV013/02: Wed 14:00–15:50 A215, M. Janošová - Prerequisites
- The knowledge of basic calculus, linear algebra and theory of probability.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Informatics (programme FI, N-AP)
- Information Technology Security (eng.) (programme FI, N-IN)
- Information Technology Security (programme FI, N-IN)
- Bioinformatics (programme FI, N-AP)
- Information Systems (programme FI, N-IN)
- Informatics (eng.) (programme FI, D-IN4)
- Informatics (programme FI, D-IN4)
- Parallel and Distributed Systems (programme FI, N-IN)
- Computer Graphics (programme FI, N-IN)
- Computer Networks and Communication (programme FI, N-IN)
- Computer Systems and Technologies (eng.) (programme FI, D-IN4)
- Computer Systems and Technologies (programme FI, D-IN4)
- Computer Systems (programme FI, N-IN)
- Embedded Systems (eng.) (programme FI, N-IN)
- Embedded Systems (programme FI, N-IN)
- Service Science, Management and Engineering (eng.) (programme FI, N-AP)
- Service Science, Management and Engineering (programme FI, N-AP)
- Theoretical Informatics (programme FI, N-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, N-SS) (2)
- Artificial Intelligence and Natural Language Processing (programme FI, N-IN)
- Image Processing (programme FI, N-AP)
- Course objectives
- The main goal of the course is to become familiar with some basic principles of data science and statistics, with writing about numbers (presenting data using basic characteristics and statistical graphics), some basic principles of likelihood and statistical inference; to understand basic probabilistic and statistical models; to understand and explain basic principles of parametric statistical inference for continuous and categorical data base on Wald principle, likelihood and score principle connecting the statistical theory with implementation in R, geometry, and statistical graphics; to implement these techniques to R language; to be able to apply them to real data.
- Learning outcomes
- Student will be able:
- to understand principles of likelihood and statistical inference for continuous and discrete data;
- to select suitable probabilistic and statistical model for continous and discrete data;
- to use suitable basic characteristics and statistical graphics for continous and discrete data;
- to build up and explain suitable statistical test for continuous and discrete data;
- to apply statistical inference on real continuous and discrete data;
- to apply simple linear regression model on real continuous data;
- to implement statistical methods of continuous and discrete data to R. - Syllabus
- Why computer scientists should study statistics?
- Computer science related problems with analysed data
- Why the thought study based on data is useful?
- Data types
- Sampling
- Parametric probabilistic and statistical models
- Likelihood principle and parameter estimation using numerical methods
- Descriptive statistics (tables, listings, figures)
- From description to statistical inference
- Hypothesis testing and parameters of a model
- Goodness-of-fit tests
- Testing hypotheses about one-sample
- Testing hypotheses about two-samples
- Testing hypotheses about more than two sample problems including ANOVA
- Simple linear regression model
- Interpretation of statistical findings
- Literature
- CASELLA, George and Roger L. BERGER. Statistical inference. 2nd ed. Pacific Grove, Calif.: Duxbury, 2002, xxviii, 66. ISBN 0534243126. info
- Teaching methods
- Lectures, practicals.
- Assessment methods
- Homework (project), oral exam.
- Language of instruction
- English
- Further Comments
- Study Materials
The course is taught annually.
- Enrolment Statistics (Spring 2019, recent)
- Permalink: https://is.muni.cz/course/fi/spring2019/MV013