FI:PA152 Efficient Use of DB Systems - Course Information
PA152 Efficient Use of Database Systems
Faculty of InformaticsSpring 2021
- Extent and Intensity
- 2/0/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- doc. RNDr. Vlastislav Dohnal, Ph.D. (lecturer)
RNDr. Petra Budíková, Ph.D. (seminar tutor)
RNDr. Miriama Jánošová (assistant)
RNDr. Terézia Slanináková (assistant) - Guaranteed by
- doc. RNDr. Vlastislav Dohnal, Ph.D.
Department of Machine Learning and Data Processing – Faculty of Informatics
Supplier department: Department of Machine Learning and Data Processing – Faculty of Informatics - Timetable
- Wed 12:00–13:50 Virtuální místnost
- Prerequisites
- Knowledge of problems in the extent of PB154 Database Systems (or PB168) and PV062 File Organization courses.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Image Processing and Analysis (programme FI, N-VIZ)
- Applied Informatics (programme FI, N-AP)
- Information Technology Security (eng.) (programme FI, N-IN)
- Information Technology Security (programme FI, N-IN)
- Bioinformatics and systems biology (programme FI, N-UIZD)
- Bioinformatics (programme FI, N-AP)
- Computer Games Development (programme FI, N-VIZ_A)
- Computer Graphics and Visualisation (programme FI, N-VIZ_A)
- Computer Networks and Communications (programme FI, N-PSKB_A)
- Cybersecurity Management (programme FI, N-RSSS_A)
- Formal analysis of computer systems (programme FI, N-TEI)
- Graphic design (programme FI, N-VIZ)
- Graphic Design (programme FI, N-VIZ_A)
- Hardware Systems (programme FI, N-PSKB_A)
- Hardware systems (programme FI, N-PSKB)
- Image Processing and Analysis (programme FI, N-VIZ_A)
- Information security (programme FI, N-PSKB)
- Information Systems (programme FI, N-IN)
- Information Security (programme FI, N-PSKB_A)
- Quantum and Other Nonclassical Computational Models (programme FI, N-TEI)
- Mathematics with Informatics (programme PřF, N-MA)
- Parallel and Distributed Systems (programme FI, N-IN)
- Computer graphics and visualisation (programme FI, N-VIZ)
- Computer Graphics (programme FI, N-IN)
- Computer Networks and Communication (programme FI, N-IN)
- Computer Networks and Communications (programme FI, N-PSKB)
- Computer Systems (programme FI, N-IN)
- Principles of programming languages (programme FI, N-TEI)
- Embedded Systems (eng.) (programme FI, N-IN)
- Embedded Systems (programme FI, N-IN)
- Cybersecurity management (programme FI, N-RSSS)
- Services development management (programme FI, N-RSSS)
- Software Systems Development Management (programme FI, N-RSSS)
- Services Development Management (programme FI, N-RSSS_A)
- Service Science, Management and Engineering (eng.) (programme FI, N-AP)
- Service Science, Management and Engineering (programme FI, N-AP)
- Social Informatics (programme FI, B-AP)
- Software Systems Development Management (programme FI, N-RSSS_A)
- Software Systems (programme FI, N-PSKB_A)
- Software systems (programme FI, N-PSKB)
- Machine learning and artificial intelligence (programme FI, N-UIZD)
- Theoretical Informatics (programme FI, N-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, N-SS) (2)
- Artificial Intelligence and Natural Language Processing (programme FI, N-IN)
- Computer Games Development (programme FI, N-VIZ)
- Processing and analysis of large-scale data (programme FI, N-UIZD)
- Image Processing (programme FI, N-AP)
- Natural language processing (programme FI, N-UIZD)
- Course objectives
- The aim of the course is to become familiar with the capabilities of database systems and their efficient use.
- Learning outcomes
- Student will be able to:
- understand the principles of relational database systems;
- analyze performance of query processing;
- optimize processed queries both by rewriting them and by creating indexes and applying other techniques;
- Explain principles of logging and recovery from failure;
- Design basic replication strategies to achieve high availability;
- Design a disk storage for the database system. - Syllabus
- Introduction
- Data storage: efficient use of secondary storage, records, blocks. Searching: index structures, sequential files, trees, hashing, multidimensional indexes.
- Query execution: evaluation plan, algebraic laws, cost estimation, algorithms for operators, sorting and joining relations, query execution and pipelining.
- Query optimization: contribution of indexes, referential integrity, materialized views, table partitioning, disk storage.
- Database optimization: relational schema tuning, index optimization, database monitoring tools.
- Transaction management: properties and their implementation, concurrency control, scheduling, data and index locking, logging and recovery from failures.
- Database security: access rights, data security.
- Spatial databases: indexes, operators.
- Analytical tools.
- Literature
- recommended literature
- SILBERSCHATZ, Abraham, Henry F. KORTH and S. SUDARSHAN. Database system concepts. 5th ed. Boston: McGraw-Hill, 2006, xxvi, 1142. ISBN 0072958863. info
- GARCIA-MOLINA, Hector, Jeffrey D. ULLMAN and Jennifer WIDOM. Database system implementation. Upper Saddle River: Prentice Hall, 2000, xv, 653 s. ISBN 0-13-040264-8. info
- Teaching methods
- Lectures and three home assignments.
- Assessment methods
- Completing home assignments, written exam. The evaluation includes both the score obtained from homework and the written exam. The written exam includes both closed (choice from options) and freeform questions.
- Language of instruction
- English
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually.
- Enrolment Statistics (Spring 2021, recent)
- Permalink: https://is.muni.cz/course/fi/spring2021/PA152