FI:IV127 Adaptive Learning Sem. - Course Information
IV127 Adaptive Learning Seminar
Faculty of InformaticsSpring 2022
- Extent and Intensity
- 0/2/0. 2 credit(s) (plus 1 for the colloquium). Type of Completion: k (colloquium).
- Teacher(s)
- doc. Mgr. Radek Pelánek, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Radek Pelánek, Ph.D.
Department of Machine Learning and Data Processing – Faculty of Informatics
Supplier department: Department of Machine Learning and Data Processing – Faculty of Informatics - Timetable
- Fri 18. 2. to Fri 20. 5. Fri 10:00–11:50 A220
- Prerequisites (in Czech)
- SOUHLAS
Účast na semináři vyžaduje schopnost číst odborný anglický text a samostatně naprogramovat analýzu dat (typicky Python, pandas a další knihovny, ale není to nezbytné). - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Image Processing and Analysis (programme FI, N-VIZ)
- Bioinformatics and systems biology (programme FI, N-UIZD)
- Computer Games Development (programme FI, N-VIZ_A)
- Computer Graphics and Visualisation (programme FI, N-VIZ_A)
- Computer Networks and Communications (programme FI, N-PSKB_A)
- Cybersecurity Management (programme FI, N-RSSS_A)
- Formal analysis of computer systems (programme FI, N-TEI)
- Graphic design (programme FI, N-VIZ)
- Graphic Design (programme FI, N-VIZ_A)
- Hardware Systems (programme FI, N-PSKB_A)
- Hardware systems (programme FI, N-PSKB)
- Image Processing and Analysis (programme FI, N-VIZ_A)
- Information security (programme FI, N-PSKB)
- Informatics (programme FI, B-INF) (2)
- Informatics in education (programme FI, B-IVV) (2)
- Information Security (programme FI, N-PSKB_A)
- Quantum and Other Nonclassical Computational Models (programme FI, N-TEI)
- Computer graphics and visualisation (programme FI, N-VIZ)
- Computer Networks and Communications (programme FI, N-PSKB)
- Principles of programming languages (programme FI, N-TEI)
- Programming and development (programme FI, B-PVA)
- Cybersecurity management (programme FI, N-RSSS)
- Services development management (programme FI, N-RSSS)
- Software Systems Development Management (programme FI, N-RSSS)
- Services Development Management (programme FI, N-RSSS_A)
- Software Systems Development Management (programme FI, N-RSSS_A)
- Software Systems (programme FI, N-PSKB_A)
- Software systems (programme FI, N-PSKB)
- Machine learning and artificial intelligence (programme FI, N-UIZD)
- Teacher of Informatics and IT administrator (programme FI, N-UCI)
- Informatics for secondary school teachers (programme FI, N-UCI) (2)
- Computer Games Development (programme FI, N-VIZ)
- Processing and analysis of large-scale data (programme FI, N-UIZD)
- Natural language processing (programme FI, N-UIZD)
- Course objectives
- Students gain experience with data analysis and machine learning in the context of educational applications.
- Learning outcomes
- At the end of the course, students will be able to apply methods of data analysis and machine learning in the area of educational applications.
- Syllabus
- Presentation of research papers from research areas relevant to the Adaptive learning lab - educational data mining, machine learning, cognitive psychology. Development of educational systems, analysis of educational data, presentation and discussion of results.
- Literature
- Advances in intelligent tutoring systems. Edited by Roger Nkambou - Jacqueline Bourdeau - Riichiro Mizoguchi. Berlin: Springer, 2010, xxii, 508. ISBN 9783642143625. info
- WOOLF, Beverly Park. Building intelligent interactive tutors : student-centered strategies for revolutionizing e-learning. Burlington, MA: Morgan Kaufmann Publishers, 2009, xii, 467. ISBN 9780123735942. info
- Teaching methods
- Student presentations, moderated discussion.
- Assessment methods
- Project work, presentation, active participation.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught each semester.
- Enrolment Statistics (Spring 2022, recent)
- Permalink: https://is.muni.cz/course/fi/spring2022/IV127