FI:IA038 Types and Proofs - Course Information
IA038 Types and Proofs
Faculty of InformaticsSpring 2023
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- prof. RNDr. Jiří Zlatuška, CSc. (lecturer)
- Guaranteed by
- prof. RNDr. Jiří Zlatuška, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: prof. RNDr. Jiří Zlatuška, CSc.
Supplier department: Department of Computer Science – Faculty of Informatics - Timetable
- Tue 14. 2. to Tue 9. 5. Tue 12:00–13:50 C511
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Image Processing and Analysis (programme FI, N-VIZ)
- Applied Informatics (programme FI, N-AP)
- Information Technology Security (eng.) (programme FI, N-IN)
- Information Technology Security (programme FI, N-IN)
- Bioinformatics and systems biology (programme FI, N-UIZD)
- Bioinformatics (programme FI, N-AP)
- Computer Games Development (programme FI, N-VIZ_A)
- Computer Graphics and Visualisation (programme FI, N-VIZ_A)
- Computer Networks and Communications (programme FI, N-PSKB_A)
- Cybersecurity Management (programme FI, N-RSSS_A)
- Discrete algorithms and models (programme FI, N-TEI)
- Formal analysis of computer systems (programme FI, N-TEI)
- Graphic design (programme FI, N-VIZ)
- Graphic Design (programme FI, N-VIZ_A)
- Hardware Systems (programme FI, N-PSKB_A)
- Hardware systems (programme FI, N-PSKB)
- Image Processing and Analysis (programme FI, N-VIZ_A)
- Information security (programme FI, N-PSKB)
- Information Systems (programme FI, N-IN)
- Information Security (programme FI, N-PSKB_A)
- Quantum and Other Nonclassical Computational Models (programme FI, N-TEI)
- Parallel and Distributed Systems (programme FI, N-IN)
- Computer graphics and visualisation (programme FI, N-VIZ)
- Computer Graphics (programme FI, N-IN)
- Computer Networks and Communication (programme FI, N-IN)
- Computer Networks and Communications (programme FI, N-PSKB)
- Computer Systems (programme FI, N-IN)
- Principles of programming languages (programme FI, N-TEI)
- Embedded Systems (eng.) (programme FI, N-IN)
- Embedded Systems (programme FI, N-IN)
- Cybersecurity management (programme FI, N-RSSS)
- Services development management (programme FI, N-RSSS)
- Software Systems Development Management (programme FI, N-RSSS)
- Services Development Management (programme FI, N-RSSS_A)
- Service Science, Management and Engineering (eng.) (programme FI, N-AP)
- Service Science, Management and Engineering (programme FI, N-AP)
- Social Informatics (programme FI, B-AP)
- Software Systems Development Management (programme FI, N-RSSS_A)
- Software Systems (programme FI, N-PSKB_A)
- Software systems (programme FI, N-PSKB)
- Machine learning and artificial intelligence (programme FI, N-UIZD)
- Theoretical Informatics (programme FI, N-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, N-SS) (2)
- Artificial Intelligence and Natural Language Processing (programme FI, N-IN)
- Computer Games Development (programme FI, N-VIZ)
- Processing and analysis of large-scale data (programme FI, N-UIZD)
- Image Processing (programme FI, N-AP)
- Natural language processing (programme FI, N-UIZD)
- Course objectives
- This course delivers focuses on the correspondence between proof theory and typed lambda-calculus and its generalization to the correspondence between computations as proof simplifications and program specifications as types in various formal settings. The contents of the course is relevant for work in many areas of theoretical computer science.
- Syllabus
- Meaning and denotation in logic, tarski and Heyting.
- natural deduction: calculus, rules, computational interpretation.
- Curry-Howard isomorphism: lambda-calculus, operational and denotational interpretation, conversion, isomorphism.
- Normalization theorem: Church-Rosser property, weak normalization, strong normalization.
- Sequent calculus: structural rules, intuitionistic version, identities, logical rules, properties of the cut-free system, translation between sequent calculus and natural deduction.
- Strong normalization theorem: reducibility and its properties.
- Gödels system T, calculus, normalization, expressive power.
- Coherent spaces, stabil functions, paralel disjunction, product and function spaces, denotational semantics of System T.
- Sums in natural deduction: problems, standard conversion, commuting conversions, functional calculus.
- System F: calculus, simple types, free structures, inductive types, Curry-Howard isomorphism, strong normalization.
- Coherent semantics of the sum; cut-elimination theorem; representation.
- Literature
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught once in two years.
- Enrolment Statistics (Spring 2023, recent)
- Permalink: https://is.muni.cz/course/fi/spring2023/IA038