FI:PV260 Software Quality - Course Information
PV260 Software Quality
Faculty of InformaticsSpring 2023
- Extent and Intensity
- 2/2/1. 4 credit(s) (plus extra credits for completion). Type of Completion: k (colloquium).
- Teacher(s)
- doc. Ing. RNDr. Barbora Bühnová, Ph.D. (lecturer)
Bruno Rossi, PhD (lecturer)
RNDr. Ondřej Krajíček (lecturer)
Mgr. Radim Göth (seminar tutor)
Ing. Dávid Halász (seminar tutor)
Bc. Radovan Hančuľák (seminar tutor)
Ing. Pavel Hrdina (seminar tutor)
Ing. Ondřej Konečný (seminar tutor)
Ing. Jiří Koudelka (seminar tutor)
Ing. Mgr. Miroslav Kubus (seminar tutor)
Bc. Oliver Mačejovský (seminar tutor)
Mgr. Peter Stanko (seminar tutor)
Ing. Juraj Strecha (seminar tutor)
Ing. Jan Šimonek (seminar tutor)
Bc. Erik Báča (assistant)
Bc. Michal Eisner (assistant)
Bc. Viktor Konupčík (assistant)
Bc. Tomáš Madeja (assistant)
Bc. Richard Pánek (assistant) - Providers of Specific teaching support
- Zbyněk Cincibus (přepisovatel)
- Guaranteed by
- doc. Ing. RNDr. Barbora Bühnová, Ph.D.
Department of Computer Systems and Communications – Faculty of Informatics
Supplier department: Department of Computer Systems and Communications – Faculty of Informatics - Timetable
- Tue 14. 2. to Tue 9. 5. Tue 16:00–17:50 D2
- Timetable of Seminar Groups:
PV260/NetSuite_Java_CZ: Mon 13. 2. to Mon 15. 5. Mon 16:00–17:50 A320, P. Hrdina, O. Konečný, J. Strecha, J. Šimonek
PV260/RedHat_multi_EN: Thu 16. 2. to Thu 11. 5. Thu 14:00–15:50 A218, D. Halász, R. Hančuľák
PV260/Techmates_CSharp: Tue 14. 2. to Tue 9. 5. Tue 18:00–19:50 A319, M. Kubus
PV260/YSoft_CSharp_CZ: Tue 14. 2. to Tue 9. 5. Tue 12:00–13:50 A320, R. Göth - Prerequisites (in Czech)
- PB007 Software Engineering I && ( PV168 Seminar in Java programming || PA165 Java Enterprise Applications || PV178 Introduction to C#/.NET ) || SOUHLAS
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 100 student(s).
Current registration and enrolment status: enrolled: 73/100, only registered: 2/100, only registered with preference (fields directly associated with the programme): 2/100 - fields of study / plans the course is directly associated with
- Image Processing and Analysis (programme FI, N-VIZ)
- Applied Informatics (programme FI, N-AP)
- Information Technology Security (eng.) (programme FI, N-IN)
- Information Technology Security (programme FI, N-IN)
- Bioinformatics and systems biology (programme FI, N-UIZD)
- Bioinformatics (programme FI, N-AP)
- Computer Games Development (programme FI, N-VIZ_A)
- Computer Graphics and Visualisation (programme FI, N-VIZ_A)
- Computer Networks and Communications (programme FI, N-PSKB_A)
- Cybersecurity Management (programme FI, N-RSSS_A)
- Formal analysis of computer systems (programme FI, N-TEI)
- Graphic design (programme FI, N-VIZ)
- Graphic Design (programme FI, N-VIZ_A)
- Hardware Systems (programme FI, N-PSKB_A)
- Hardware systems (programme FI, N-PSKB)
- Image Processing and Analysis (programme FI, N-VIZ_A)
- Information security (programme FI, N-PSKB)
- Information Systems (programme FI, N-IN)
- Informatics (eng.) (programme FI, D-IN4)
- Informatics (programme FI, D-IN4)
- Information Security (programme FI, N-PSKB_A)
- Quantum and Other Nonclassical Computational Models (programme FI, N-TEI)
- Deployment and operations of software systems (programme FI, N-SWE)
- Design and development of software systems (programme FI, N-SWE)
- Parallel and Distributed Systems (programme FI, N-IN)
- Computer graphics and visualisation (programme FI, N-VIZ)
- Computer Graphics (programme FI, N-IN)
- Computer Networks and Communication (programme FI, N-IN)
- Computer Networks and Communications (programme FI, N-PSKB)
- Computer Systems and Technologies (eng.) (programme FI, D-IN4)
- Computer Systems and Technologies (programme FI, D-IN4)
- Computer Systems (programme FI, N-IN)
- Principles of programming languages (programme FI, N-TEI)
- Embedded Systems (eng.) (programme FI, N-IN)
- Embedded Systems (programme FI, N-IN)
- Cybersecurity management (programme FI, N-RSSS)
- Services development management (programme FI, N-RSSS)
- Software Systems Development Management (programme FI, N-RSSS)
- Services Development Management (programme FI, N-RSSS_A)
- Service Science, Management and Engineering (eng.) (programme FI, N-AP)
- Service Science, Management and Engineering (programme FI, N-AP)
- Software Systems Development Management (programme FI, N-RSSS_A)
- Software Systems (programme FI, N-PSKB_A)
- Software systems (programme FI, N-PSKB)
- Machine learning and artificial intelligence (programme FI, N-UIZD)
- Theoretical Informatics (programme FI, N-IN)
- Teacher of Informatics and IT administrator (programme FI, N-UCI)
- Informatics for secondary school teachers (programme FI, N-UCI) (2)
- Computer Games Development (programme FI, N-VIZ)
- Processing and analysis of large-scale data (programme FI, N-UIZD)
- Image Processing (programme FI, N-AP)
- Natural language processing (programme FI, N-UIZD)
- Course objectives
- The aim of the course is to introduce students into both theoretical and practical aspects of software quality (quality attributes, metrics, conflicts) and supportive processes (activities contributing to building software quality along the development process), and develop critical thinking that will allow them to identify code flaws and future problems early during the software development life cycle. Students will also become familiar with code refactoring and different dimensions of software testing.
- Learning outcomes
- At the end of the course students will:
understand different aspects of software quality (quality attributes, metrics, conflicts) and supportive processes (activities contributing to building software quality along the development process);
be able to identify code flaws related to reliability, performance, scalability, maintainability and testability;
be able to refactor existing code to improve the discussed quality attributes;
have practical experience with different dimensions of software testing and related tools. - Syllabus
- Roadmap to software quality engineering methods.
- Software measurement and metrics, and their role in quality improvement.
- Quality in software development, Clean Code & SOLID principles.
- Bad code smells and code refactoring.
- Focus on quality attributes and conflicts between them.
- Static code analysis and code reviews.
- Requirements and test cases. From unit testing to integration testing.
- Best practices in software testing and testability. Popular testing strategies.
- Performance engineering and performance testing.
- Challenges of quality management in cloud applications.
- Continuous integration and issue tracking.
- Software quality management process.
- Quality and testing in agile.
- Literature
- ROBERT.C., Martin. Clean Code: A Handbook of Agile Software Craftsmanship. New York: Prentice Hall, 2008. ISBN 978-0-13-235088-4. info
- FOWLER, Martin. Refactoring :improving the design of existing code. Boston: Addison-Wesley, 2000, xxi, 431 s. ISBN 0-201-48567-2. info
- FENTON, Norman E. and Shari Lawrence PFLEEGER. Software metrics :a rigorous and practical approach. 2nd ed. Boston: PWS Publishing, 1997, xii, 638 s. ISBN 0-534-95425-1. info
- PEZZE, M and M YOUNG. Software Testing And Analysis: Process, Principles And Techniques. Hoboken, N.J.: John Wiley & Sons Inc,, 2007, 488 pp. ISBN 978-0-471-45593-6. info
- Teaching methods
- Lectures, using: presentations, examples, practical self-work solution to exercises;
Seminar (computer lab) sessions involving practical work on the topics of the lectures (in the case of the company-led seminar groups, selected topics may be elaborated more deeply than others to increase the knowledge transfer from the involved experts);
Team projects within the seminars. - Assessment methods
- Students will be assigned medium-size practical assignments (spanning across multiple weeks) within the seminars. The goal of the assignments will be to let the students improve the quality of the provided code by applying the techniques discussed during the course in terms of software measurement for quality improvement, refactoring and testing approaches.
Additionally, there will be a written test at the end, testing the knowledge gained by the students during the semester.
To pass the course, the students must reach at least 70 points out of 100 (45 for seminar assignments, 35 for the final written test, 10 points for activity in seminars, 10 points for activity in lectures). - Language of instruction
- English
- Further Comments
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- PA200 Cloud Computing
PA165 || PV179 || PV260
- PA200 Cloud Computing
- Enrolment Statistics (Spring 2023, recent)
- Permalink: https://is.muni.cz/course/fi/spring2023/PV260