FI:PA154 Language Modeling - Course Information
PA154 Language Modeling
Faculty of InformaticsSpring 2024
- Extent and Intensity
- 2/0/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- doc. Mgr. Pavel Rychlý, Ph.D. (lecturer)
RNDr. Zuzana Nevěřilová, Ph.D. (assistant) - Guaranteed by
- doc. Mgr. Pavel Rychlý, Ph.D.
Department of Machine Learning and Data Processing – Faculty of Informatics
Contact Person: doc. Mgr. Pavel Rychlý, Ph.D.
Supplier department: Department of Machine Learning and Data Processing – Faculty of Informatics - Timetable
- Tue 12:00–13:50 C416
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Image Processing and Analysis (programme FI, N-VIZ)
- Applied Informatics (programme FI, N-AP)
- Information Technology Security (eng.) (programme FI, N-IN)
- Information Technology Security (programme FI, N-IN)
- Bioinformatics and systems biology (programme FI, N-UIZD)
- Bioinformatics (programme FI, N-AP)
- Computer Games Development (programme FI, N-VIZ_A)
- Computer Graphics and Visualisation (programme FI, N-VIZ_A)
- Computer Networks and Communications (programme FI, N-PSKB_A)
- Cybersecurity Management (programme FI, N-RSSS_A)
- Formal analysis of computer systems (programme FI, N-TEI)
- Graphic design (programme FI, N-VIZ)
- Graphic Design (programme FI, N-VIZ_A)
- Hardware Systems (programme FI, N-PSKB_A)
- Hardware systems (programme FI, N-PSKB)
- Image Processing and Analysis (programme FI, N-VIZ_A)
- Information security (programme FI, N-PSKB)
- Information Systems (programme FI, N-IN)
- Information Security (programme FI, N-PSKB_A)
- Quantum and Other Nonclassical Computational Models (programme FI, N-TEI)
- Parallel and Distributed Systems (programme FI, N-IN)
- Computer graphics and visualisation (programme FI, N-VIZ)
- Computer Graphics (programme FI, N-IN)
- Computational Linguistics (programme FF, N-PLIN_) (3)
- Computer Networks and Communication (programme FI, N-IN)
- Computer Networks and Communications (programme FI, N-PSKB)
- Computer Systems (programme FI, N-IN)
- Principles of programming languages (programme FI, N-TEI)
- Embedded Systems (eng.) (programme FI, N-IN)
- Embedded Systems (programme FI, N-IN)
- Cybersecurity management (programme FI, N-RSSS)
- Services development management (programme FI, N-RSSS)
- Software Systems Development Management (programme FI, N-RSSS)
- Services Development Management (programme FI, N-RSSS_A)
- Service Science, Management and Engineering (eng.) (programme FI, N-AP)
- Service Science, Management and Engineering (programme FI, N-AP)
- Social Informatics (programme FI, B-AP)
- Software Systems Development Management (programme FI, N-RSSS_A)
- Software Systems (programme FI, N-PSKB_A)
- Software systems (programme FI, N-PSKB)
- Machine learning and artificial intelligence (programme FI, N-UIZD)
- Theoretical Informatics (programme FI, N-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, N-SS) (2)
- Artificial Intelligence and Natural Language Processing (programme FI, N-IN)
- Computer Games Development (programme FI, N-VIZ)
- Processing and analysis of large-scale data (programme FI, N-UIZD)
- Image Processing (programme FI, N-AP)
- Natural language processing (programme FI, N-UIZD)
- Course objectives
- This course aims at providing the students with state-of-the-art in (mainly statistical) methods, algorithms and tools used for processing of large text corpora when they are created or subject to subsequent information retrieval.
These tools are practically used in many areas of natural language processing (semiautomatic building of text corpora, morphological analysis and desambiguation, syntactic analysis, effective indexation and search in text corpora, statistical machine translation, semantic analysis etc.). - Learning outcomes
- At the end of the course students will be able to: use tools containing language models; understand the related theories and algorithms; include probabilistic models in the design of text processing applications; implement selected techniques in own applications.
- Syllabus
- Elements of Probability and Information Theory
- Language Modeling in General and the Noisy Channel Model
- Smoothing and the Expectation-Maximization algorithm
- Markov models, Hidden Markov Models (HMMs)
- Viterbi Algorithm
- Tagging methods, HMM Tagging, Statistical Transformation Rule-Based Tagging
- Statistical Alignment and Machine Translation
- Text Categorization and Clustering
- Graphical Models
- Parallelization, MapReduce
- Literature
- Teaching methods
- lectures
- Assessment methods
- Written exam.
- Language of instruction
- English
- Further Comments
- Study Materials
The course is taught annually.
- Enrolment Statistics (Spring 2024, recent)
- Permalink: https://is.muni.cz/course/fi/spring2024/PA154