FI:IA169 Model Checking - Course Information
IA169 Model Checking
Faculty of InformaticsSpring 2025
The course is not taught in Spring 2025
- Extent and Intensity
- 2/1/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
In-person direct teaching - Teacher(s)
- prof. RNDr. Jan Strejček, Ph.D. (lecturer)
RNDr. Martin Jonáš, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Jan Strejček, Ph.D.
Department of Computer Science – Faculty of Informatics
Supplier department: Department of Computer Science – Faculty of Informatics - Prerequisites
- Some degree of abstract math reasoning.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 130 student(s).
Current registration and enrolment status: enrolled: 0/130, only registered: 2/130, only registered with preference (fields directly associated with the programme): 0/130 - fields of study / plans the course is directly associated with
- there are 30 fields of study the course is directly associated with, display
- Course objectives
- The student will understand the fundamental and currently used model checking algorithms and techniques (except those primarily designed for software). Further, the student will be able to read and write specifications in LTL and CTL, and use relevant formalisms like Büchi automata and binary decision diagrams.
- Learning outcomes
- Students will:
understand traditional model checking algorithms (LTL and CTL model checking) and current approaches (bounded model checking, k-induction, CEGAR, property-driven reachability);
be able to read and write specifications in LTL and CTL;
be aware of potential applications and inherent limitations of model checking algorithms. - Syllabus
- Overview of the model checking area.
- Kripke structure, labelled transition system, LTL, CTL, Büchi automata.
- Automata-based LTL model checking.
- CTL model checking.
- Bounded model checking and k-induction.
- Reachability in pushdown systems.
- Abstraction and CEGAR.
- Property directed reachability.
- Literature
- CLARKE, E. M., Orna GRUMBERG, Doron PELED, Daniel KROENING and Helmut VEITH. Model checking. Second edition. Cambridge, Massachusetts: MIT Press, 2018, xx, 402. ISBN 9780262038836. info
- Handbook of model checking. Edited by E. M. Clarke - T. A. Henzinger - Helmut Veith - Roderick Bloem. Cham: Springer International Publishing AG, 2018, xxiv, 1210. ISBN 9783319105741. info
- Teaching methods
- lectures, seminars
- Assessment methods
- oral exam
- Language of instruction
- English
- Further Comments
- Study Materials
The course is taught annually.
The course is taught: every week.
- Enrolment Statistics (Spring 2025, recent)
- Permalink: https://is.muni.cz/course/fi/spring2025/IA169