PdF:IMAp01 The Base of Math. Education - Course Information
IMAp01 The Base of Mathematic Education
Faculty of Educationautumn 2020
- Extent and Intensity
- 0/2/0. 3 credit(s). Type of Completion: k (colloquium).
- Teacher(s)
- doc. RNDr. Jaroslav Beránek, CSc. (seminar tutor)
Mgr. Jitka Panáčová, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Jaroslav Beránek, CSc.
Department of Mathematics – Faculty of Education
Supplier department: Department of Mathematics – Faculty of Education - Timetable of Seminar Groups
- IMAp01/01: Mon 12:00–13:50 učebna 41, J. Panáčová
IMAp01/02: Mon 7:00–8:50 učebna 41, J. Panáčová
IMAp01/03: Tue 15:00–16:50 učebna 24, J. Beránek
IMAp01/04: Mon 16:00–17:50 učebna 42, J. Beránek
IMAp01/05: Wed 7:00–8:50 učebna 35, J. Panáčová - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- Primary School Teacher Training (programme PdF, M-ZS15)
- Primary School Teacher Training (programme PdF, M-ZS5)
- Course objectives
- Mathematical logic. Set theory - applications (Sets and their visualizations, operations with sets). Propositional forms and formulae, definitions of basic notions, deducible rules of propositional and predicate calculus, proofs of theorems. Binary relations, their visualizations and properties ordering, equivalence, mapping. Study and utilizing of the concepts in school mathematics.
- Learning outcomes
- At the end of the course students should be able to understand and explain the fundaments of Mathematical Branches, Fundaments of logic and set theory. > Propositions, propositional formulae. > Sets and their visualizations. > Operations with sets. > Propositional forms. > Definitions of basic notions. > Deducible rules of propositional and predicate calculus. > Proofs of theorems. > Binary relations, their visualizations and properties. > Equivalence relations, set partitions. > Ordered sets. > Composition of relations. > Study and utilizing of the concepts in school mathematics.
- Syllabus
- Solving of selected problems of propositional calculus, set theory especially verbal problems. Rules of derivation of propositional and predicate calculus - examples of correct and erroneous reasoning. Proofs of mathematical theorems, examples of basic principles of proofs of specific simple mathematical theorems. Study of specific binary relations with respect to school mathematics.
- Literature
- required literature
- DRÁBEK, Jaroslav and Václav VIKTORA. Základy elementární aritmetiky : pro učitelství 1. stupně ZŠ. 1. vyd. Praha: Státní pedagogické nakladatelství, 1985, 223 s. URL info
- recommended literature
- FAJMON, Břetislav. Základy matematiky - přednáškový text (Foundations of Mathematics - lecture notes). Online. rno, 2017, 82 pp. osobní stránka autora info
- KOSMÁK, Ladislav. Množinová algebra (Quantum Algebra). Brno: Masarykova univerzita Brno, 1995, 131 pp. ISBN 80-210-1082-7. info
- not specified
- HORÁK, Pavel. Základy matematiky: Učební text. 2007. URL info
- VIKTORA, Václav. Matematika I pro studium učitelství v 1. až 4. ročníku ZŠ. čtvrté. Brno: Univerzita Jana Evangelisty Purkyně v Brně, 1983, 222 s. info
- FUCHS, Eduard. Logika a teorie množijn (Úvod do oboru). 1st ed. Brno: UJEP Brno, 1978, 175 pp. info
- Teaching methods
- Seminar. Solving of problems.
- Assessment methods
- Seminar; written text, oral discussion
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Enrolment Statistics (autumn 2020, recent)
- Permalink: https://is.muni.cz/course/ped/autumn2020/IMAp01