IMAp01 The Base of Mathematic Education

Faculty of Education
autumn 2020
Extent and Intensity
0/2/0. 3 credit(s). Type of Completion: k (colloquium).
Teacher(s)
doc. RNDr. Jaroslav Beránek, CSc. (seminar tutor)
Mgr. Jitka Panáčová, Ph.D. (seminar tutor)
Guaranteed by
doc. RNDr. Jaroslav Beránek, CSc.
Department of Mathematics – Faculty of Education
Supplier department: Department of Mathematics – Faculty of Education
Timetable of Seminar Groups
IMAp01/01: Mon 12:00–13:50 učebna 41, J. Panáčová
IMAp01/02: Mon 7:00–8:50 učebna 41, J. Panáčová
IMAp01/03: Tue 15:00–16:50 učebna 24, J. Beránek
IMAp01/04: Mon 16:00–17:50 učebna 42, J. Beránek
IMAp01/05: Wed 7:00–8:50 učebna 35, J. Panáčová
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Mathematical logic. Set theory - applications (Sets and their visualizations, operations with sets). Propositional forms and formulae, definitions of basic notions, deducible rules of propositional and predicate calculus, proofs of theorems. Binary relations, their visualizations and properties ordering, equivalence, mapping. Study and utilizing of the concepts in school mathematics.
Learning outcomes
At the end of the course students should be able to understand and explain the fundaments of Mathematical Branches, Fundaments of logic and set theory. > Propositions, propositional formulae. > Sets and their visualizations. > Operations with sets. > Propositional forms. > Definitions of basic notions. > Deducible rules of propositional and predicate calculus. > Proofs of theorems. > Binary relations, their visualizations and properties. > Equivalence relations, set partitions. > Ordered sets. > Composition of relations. > Study and utilizing of the concepts in school mathematics.
Syllabus
  • Solving of selected problems of propositional calculus, set theory especially verbal problems. Rules of derivation of propositional and predicate calculus - examples of correct and erroneous reasoning. Proofs of mathematical theorems, examples of basic principles of proofs of specific simple mathematical theorems. Study of specific binary relations with respect to school mathematics.
Literature
    required literature
  • DRÁBEK, Jaroslav and Václav VIKTORA. Základy elementární aritmetiky : pro učitelství 1. stupně ZŠ. 1. vyd. Praha: Státní pedagogické nakladatelství, 1985, 223 s. URL info
    recommended literature
  • FAJMON, Břetislav. Základy matematiky - přednáškový text (Foundations of Mathematics - lecture notes). Online. rno, 2017, 82 pp. osobní stránka autora info
  • KOSMÁK, Ladislav. Množinová algebra (Quantum Algebra). Brno: Masarykova univerzita Brno, 1995, 131 pp. ISBN 80-210-1082-7. info
    not specified
  • HORÁK, Pavel. Základy matematiky: Učební text. 2007. URL info
  • VIKTORA, Václav. Matematika I pro studium učitelství v 1. až 4. ročníku ZŠ. čtvrté. Brno: Univerzita Jana Evangelisty Purkyně v Brně, 1983, 222 s. info
  • FUCHS, Eduard. Logika a teorie množijn (Úvod do oboru). 1st ed. Brno: UJEP Brno, 1978, 175 pp. info
Teaching methods
Seminar. Solving of problems.
Assessment methods
Seminar; written text, oral discussion
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2017, Autumn 2018, Autumn 2019, Autumn 2021, Autumn 2022, Autumn 2023.
  • Enrolment Statistics (autumn 2020, recent)
  • Permalink: https://is.muni.cz/course/ped/autumn2020/IMAp01