MA0025 Teaching of Mathematics 3

Faculty of Education
Autumn 2021
Extent and Intensity
2/2/1.3. 4 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Jaroslav Beránek, CSc. (lecturer)
Mgr. Irena Budínová, Ph.D. (lecturer)
Mgr. Jana Veseláková (seminar tutor)
Guaranteed by
doc. RNDr. Jaroslav Beránek, CSc.
Department of Mathematics – Faculty of Education
Supplier department: Department of Mathematics – Faculty of Education
Timetable
Mon 20. 9. to Mon 13. 12. Mon 12:00–13:50 učebna 30
  • Timetable of Seminar Groups:
MA0025/01: Wed 22. 9. to Wed 15. 12. Wed 18:00–19:50 učebna 37, J. Veseláková
Prerequisites
Geometrical knoweledge and skills. Formation of concepts, their definitions and their properties. Construction, transformations. Proofs in geometry. Measurement.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The aim of the course is to acquaint students with contemporary ways of teaching geometry, with methods of teaching, with various approaches to defining concepts in geometry, with proofing some statements, with tasks of counting geometry, with methods of drawing.
Learning outcomes
At the end of courses students should be able to use theoretical didactical knowledge in the geometry of the lower secondary school. Student will understand the methods and forms in mathematical education (espcially geometry), formation of concepts, their definitions and their properties. Creative abilities in the education process. Drawing, declaring. Numerical geometry.
Syllabus
  • Geometry concepts: Point, line, plane, ray, segmet, angle. Triangle, square, rectangle, parallerogram, polygons. Congruent figures. Solid figures. Area of plane figure, volume of solid figure. Construction. Transformations (symetry,translation, rotation). Theorem of Pythagoras, Theorem of Eukliddes. Problems solving.
Literature
  • KUŘINA, František and Zdeněk PŮLPÁN. Podivuhodný svět elementární matematiky : elementární matematika čtená podruhé. Vyd. 1. Praha: Academia, 2006, 278 s. ISBN 8020013660. info
  • KUŘINA, František. Deset geometrických transformací. 1. vyd. Praha: Prometheus, 2002, 282 s., [8. ISBN 80-7196-231-7. info
  • LÁVIČKA, Miroslav. Geometrie. 1. vyd. V Plzni: Západočeská univerzita v Plzni, 2002, 189 s. ISBN 80-7082-861-7. info
  • KUŘINA, František. Deset pohledů na geometrii. Praha: Matematický ústav AV ČR, 1996, 249 s. ISBN 80-85823-21-7. info
  • KUŘINA, František. Geometrické praktikum. 1. vyd. Praha: Matematický ústav AV ČR, 1994, 87 s. ISBN 80-85823-03-9. info
  • KUŘINA, František. Geometrické praktikum. 1. vyd. Praha: Matematický ústav ČSAV, 1992, 59 s. ISBN 80-901218-3-7. info
  • KUŘINA, František. Umění vidět v matematice. 1. vyd. Praha: Státní pedagogické nakladatelství, 1990, 247 s. ISBN 8004237533. info
  • KUŘINA, František. Problémové vyučování v geometrii. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1976, 205 s. URL info
Teaching methods
Teoretical lectures.
Assessment methods
writting test (60%), oral exam
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Information on the extent and intensity of the course: 16 hodin (kombinovaná forma).
The course is also listed under the following terms autumn 2020, Autumn 2022, Autumn 2023, Autumn 2024.
  • Enrolment Statistics (Autumn 2021, recent)
  • Permalink: https://is.muni.cz/course/ped/autumn2021/MA0025