PdF:MA0035 Math. motivation in physics 2 - Course Information
MA0035 Physical motivation for teaching mathematics 2
Faculty of EducationSpring 2024
- Extent and Intensity
- 0/2/0. 2 credit(s). Type of Completion: z (credit).
- Teacher(s)
- RNDr. Břetislav Fajmon, Ph.D. (seminar tutor)
Mgr. Jitka Panáčová, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Břetislav Fajmon, Ph.D.
Department of Mathematics – Faculty of Education
Supplier department: Department of Mathematics – Faculty of Education - Timetable of Seminar Groups
- MA0035/01: No timetable has been entered into IS. B. Fajmon
- Prerequisites
- MA0034 Math. motivation in physics 1
Successful completion of MA0034 is a good prerequisite for this subject, as far as physical concepts are concerned. As for the mathematical part, no special prerequisites are needed but a course on mathmatical analysis at a university level -- this should stand for the concepts taught in MA0034 in case has not finished MA0034. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Mathematics for Education (programme PdF, B-MA3S) (2)
- Mathematics for Education (programme PdF, B-SPE)
- Lower Secondary School Teacher Training in Mathematics (programme PdF, N-MA2) (4)
- Lower Secondary School Teacher Training in Mathematics (programme PdF, N-TV)
- Lower Secondary School Teacher Training in Mathematics (programme PdF, N-ZS)
- Course objectives
- i) To impart some topis from the theory of machanical solids and sets of particles and corresponding matematical tools; ii) to inspire future secondary school teachers to motivate students with technical examples while teaching some mathematical concepts; iii) to present some areas of mathematical analysis set within the framework of specific areas of physics
- Learning outcomes
- After a successful completion of the course the students will be able to a) use exponential and logarithmic functions in physical models involving differential equations; b) work with a curve integral in calculations of work along the curve; c) use definite integrals to determine the centre of gravity; d) work with the concept of a force impulse, work out the description of direct and skewed collisions; e) use doble and triple integral to calculate a moment of inertia for solids of different shapes; f) describe situations in mechanics involving rolling, torque (= moment of force) and rotational momentum.
- Syllabus
- The syllabus is built on physical concepts:
- 1-2) Physical concepts: work and kinetic energy, work of a varying force, work of an elastic force, power. Mathematical concepts: exponential and logarithmic functions and their properties, integration methods (indefinite integral), solution of some differential equations (separable equations, linear equations of the first order);
- 3-4) Physical concepts: potential energy, independence of conservative forces on the trajectory, preservation of energy, work of outer and nonconservative forces. Mathematical concepts: parametrization of a curve, curve integral of the 1st and 2nd kind;
- 5-6) Physical concepts: centre of gravity, momentum, preservation of momentum, outer forces and changes ofinner energy. Mathematical concepts: definite integral and its computation, area, volume of a rotational solid.
- 7-8) Physical notions: force impulse, direct and skewed collisions. Mathematical notions: curve integral of the 2nd kind revisited;
- 9-10) Physical concepts: rotational movement, angle speed, angle acceleration, relationship between angular and circumferential description of movement; kinetic energy of rotational movement, moment of inertia, moment of force, momentum. Mathematical concepts: double and triple integral to calculate moment of inertia
- 11-12) Physical concepts: triple integral (moment of inertia for solids in pictures d,h,j, page 274 of the Physics textbook).
- Literature
- required literature
- HALLIDAY, David, Robert RESNICK and Jearl WALKER. Fyzika : vysokoškolská učebnice obecné fyziky. Translated by Jan Obdržálek - Jiří Komrska - Petr Dub. Vyd. 1. V Brně: Vutium, 2000, 1 sv. ISBN 8021418680. info
- recommended literature
- BUŠEK, Ivan and Emil CALDA. Matematika pro gymnázia : základní poznatky z matematiky. 1. vyd. v bodovém písmu. Brno: Středisko pro pomoc studentům se specifickými nároky Masarykovy univerzity v Brně, 2005, 214 s. ISBN 8021038233. info
- MACHÁČEK, Martin. Fyzika pro gymnázia : astrofyzika. 2., upr. vyd. Praha: Prometheus, 2004, 143 s. ISBN 8071962775. info
- ŠTOLL, Ivan. Fyzika pro gymnázia : fyzika mikrosvěta. 3., přeprac. vyd. Praha: Prometheus, 2002, 190 s. ISBN 8071962414. info
- LEPIL, Oldřich. Fyzika pro gymnázia : mechanické kmitání a vlnění. 3. přeprac. vyd. Praha: Prometheus, 2001, 129 s. ISBN 8071962163. info
- LEPIL, Oldřich and Zdeněk KUPKA. Fyzika pro gymnázia :optika. 2. vyd. Praha: Prometheus, 2001, 167 s. ISBN 80-85849-71-2. info
- BARTUŠKA, Karel. Fyzika pro gymnázia :speciální teorie relativity. 3. přeprac. vyd. Praha: Prometheus, 2001, 63 s. ISBN 80-7196-209-0. info
- HRUBÝ, Dag and Josef KUBÁT. Matematika pro gymnázia : diferenciální a integrální počet. 2., upr. vyd. Praha: Prometheus, 2001, 210 s. ISBN 8071962104. info
- ODVÁRKO, Oldřich. Matematika pro gymnázia : goniometrie. 3. vydání. Praha: Prometheus, 2001, 139 stran. ISBN 8071962031. info
- ODVÁRKO, Oldřich. Matematika pro gymnázia : posloupnosti a řady. 2. vyd. Praha: Prometheus, 2001, 126 s. ISBN 8071961957. info
- BOČEK, Leo, Jaroslav ZHOUF and Jura CHARVÁT. Matematika pro gymnázia : rovnice a nerovnice [Prometheus, 2001]. 3. vyd. Praha: Prometheus, 2001, 221 s. ISBN 80-7196-154-X. info
- CALDA, Emil. Matematika pro gymnázia :komplexní čísla. 3. vyd. Praha: Prometheus, 2001, 134 s. ISBN 80-7196-187-6. info
- LEPIL, Oldřich and Přemysl ŠEDIVÝ. Fyzika pro gymnázia : elektřina a magnetismus. 5. přeprac. vyd. Praha: Prometheus, 2000, 342 s. ISBN 8071962023. info
- BEDNAŘÍK, Milan and Miroslava ŠIROKÁ. Fyzika pro gymnázia : mechanika. 3. přeprac. vyd. Praha: Prometheus, 2000, 288 s. ISBN 9788071961765. info
- POMYKALOVÁ, Eva. Matematika pro gymnázia. 4. upr. vyd. Praha: Prometheus, 2000, 206 s. ISBN 8071961744. info
- KOČANDRLE, Milan and Leo BOČEK. Matematika pro gymnázia :analytická geometrie. 2. upr. vyd. Praha: Prometheus, 2000, 220 s. ISBN 80-7196-163-9. info
- CALDA, Emil and Václav DUPAČ. Matematika pro gymnázia : kombinatorika, pravděpodobnost, statistika. 4., upr. vyd. Praha: Prometheus, 1999, 170 s. ISBN 9788071961475. info
- POMYKALOVÁ, Eva. Matematika pro gymnázia :stereometrie. 3. vyd. Praha: Prometheus, 1995, 223 s. ISBN 80-7196-178-7. info
- BARTUŠKA, Karel and Emanuel SVOBODA. Fyzika pro gymnázia : molekulová fyzika a termika. 2. vyd. Praha: Prometheus, 1994, 254 s. ISBN 8085849461. info
- POMYKALOVÁ, Eva. Matematika pro gymnázia :planimetrie. 4., upr. vyd. Praha: Prometheus, 1993, 206 s. ISBN 80-7196-174-4. info
- Teaching methods
- Presentation, task for groups or individuals.
- Assessment methods
- The credits will be approved on the basis of an active cooperation in class and with 60 per cent of success in the final test.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually. - Teacher's information
- http://matematicky.rozhovor.cz/predmety/mafy/0002matematika-a-fyzika.php
- Enrolment Statistics (recent)
- Permalink: https://is.muni.cz/course/ped/spring2024/MA0035