LgBB07 Algebra for linguists

Faculty of Arts
Spring 2021
Extent and Intensity
0/2/0. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
prof. PhDr. Bohumil Fořt, Ph.D. (lecturer)
Guaranteed by
prof. PhDr. Bohumil Fořt, Ph.D.
Department of Linguistics and Baltic Languages – Faculty of Arts
Supplier department: Department of Linguistics and Baltic Languages – Faculty of Arts
Prerequisites
The ability of abstract analythical reasoning in systematic realms.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 30 student(s).
Current registration and enrolment status: enrolled: 0/30, only registered: 0/30, only registered with preference (fields directly associated with the programme): 0/30
fields of study / plans the course is directly associated with
Course objectives
At the end of the course students should be able to apply some algebraic methods to the analysis of language. Students should use some basic terms and methods of the theory of sets, relations, graphs, probability etc.
Learning outcomes
After finishing the course the students are able to:
- use selected algebraic means for the description of selected labuage structures
- reflect languages as phenomena describable by algebraic tools
- analyze language phenomena with algebraic tools.
Syllabus
  • 1. The theory of sets as a formal system and an instrument of building mathematics 2. Relational and operational structures on sets -relations, ordered sets, lattices, graphs, monoides, groups, vector spaces 3. Fuzzy approaches and the effort to describe the uncertainty of language 4. Formal languages
Literature
  • CRYAN, Dan, Sharron SHATIL and Bill MAYBLIN. Logika. Translated by Ivo Müller. Vyd. 1. Praha: Portál, 2002, 180 s. ISBN 80-7178-707-8. info
  • BICAN, Ladislav. Algebra : (pro učitelské studium). Vyd. 1. Praha: Academia, 2001, 110 s. ISBN 8020008608. info
  • HUBEY, H. Mark. Mathematical and computational linguistics. München: Lincom Europa, 1999, xxv, 443 s. ISBN 3-89586-639-3. info
  • HORÁK, Pavel. Algebra a teoretická aritmetika. 2. vyd. Brno: Rektorát Masarykovy univerzity, 1991, 196 s. ISBN 8021003200. info
  • PROCHÁZKA, Ladislav. Algebra. 1. vyd. Praha: Academia, 1990, 560 s. info
  • NOVÁK, Vilém. Fuzzy množiny a jejich aplikace. 2. upr. vyd. Praha: Státní nakladatelství technické literatury, 1990, 296 s. ISBN 80-03-00325-3. info
  • NEBESKÝ, Ladislav. Kombinatorické vlastnosti větných struktur. Praha: Univerzita Karlova, 1988. info
  • BIRKHOFF, Garrett and Thomas C. BARTEE. Aplikovaná algebra. Translated by Jaroslav Smítal. 1. vyd. Bratislava: Alfa, 1981, 389 s. info
  • BRAINERD, Barron. Introduction to the Mathematics of language study. New York: American Elsevier Publishing Company, 1971, ix, 312. ISBN 0444000711. info
  • MARCUS, Solomon. Algebraické modely v lingvistice. Translated by Vladimír Hořejší. 1. vyd. Praha: Academia, 1969, 284 s. URL info
  • MAC LANE, Saunders and Garrett BIRKHOFF. Algebra. Translated by Anton Legéň - Jaroslav Smítal. Bratislava: Alfa, vydavateľstvo technickej a ekonomickej literatúry, 1967, 662 s. info
Teaching methods
seminar
Assessment methods
Written exam focusing on the basic notions of the discipline.
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
Information on completion of the course: PUkončení zápočtem je možné pouze pro kredit typu C. Uděluje se na základě aktivní účasti při výuce.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2022, Spring 2023, Spring 2024, Autumn 2024.
  • Enrolment Statistics (Spring 2021, recent)
  • Permalink: https://is.muni.cz/course/phil/spring2021/LgBB07