PřF:C5340 Thermodynamics of Irreversible - Course Information
C5340 Thermodynamics of Irreversible Systems
Faculty of ScienceAutumn 2001
- Extent and Intensity
- 2/0/0. 3 credit(s). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- RNDr. Jiří Čermák, DSc. (lecturer)
prof. RNDr. Igor Kučera, DrSc. (lecturer) - Guaranteed by
- prof. RNDr. Igor Kučera, DrSc.
Chemistry Section – Faculty of Science - Prerequisites
- Students must have completed the basic courses on mathemathics and physical chemistry.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, D-CH) (2)
- Analytical Chemistry (programme PřF, M-CH)
- Inorganic Chemistry (programme PřF, D-CH) (2)
- Inorganic Chemistry (programme PřF, M-CH)
- Biochemistry (programme PřF, D-CH) (2)
- Biochemistry (programme PřF, M-CH)
- Physical Chemistry (programme PřF, D-CH) (2)
- Physical Chemistry (programme PřF, M-CH)
- Physical Chemistry (programme PřF, N-CH)
- Macromolecular Chemistry (programme PřF, D-CH) (2)
- Chemistry (programme PřF, M-CH)
- Environmental Chemistry (programme PřF, D-CH) (2)
- Environmental Chemistry (programme PřF, M-CH)
- Macromolecular Chemistry (programme PřF, M-CH)
- Organic Chemistry (programme PřF, D-CH) (2)
- Organic Chemistry (programme PřF, M-CH)
- Upper Secondary School Teacher Training in Chemistry (programme PřF, M-CH)
- Upper Secondary School Teacher Training in Chemistry (programme PřF, M-SS)
- Course objectives
- The course summarizes principal axioms of classical equilibrium thermodynamics and explains the principles of of non-equilibrium thermodynamics. The introduced mathematical apparatus is applied to common non-equilibrium processes, especially to transport phenomena. Wihin the area of nonlinear phenomena, emphasis is on understanding the bases of periodic and chaotic behaviour. Simplified theoretical models are also used to analyse the mechanisms of metabolic regulation and prebiotic evolution.
- Syllabus
- 1. Thermodynamic systems, thermodynamic variables, temperature and the 1st principle of thermodynamics, the work, energy. 2. Heat, natural and reversible processes, entropy, thermodynamic potentials and mutual interrelations, measurable thermodynamic quantities, partial and molar quantities, models of thermodynamic systems, the phase rule. 3. Expression for fluxes, the linear non-equilibrium thermodynamics, Onsager's relations. 4. Entropy production, stationary states, transport phenomena. 5. Diffusion-controlled phenomena, diffusion fluxes, diffusion under concentration gradient, an overview of diffusion coefficients. 6. Kinetic interpretation of diffusion. 7. High-diffusivity paths, an influence of ordering upon diffusion, experimental methods. 8. Nonlinear nonequilibrium thermodynamics. Thermodynamic criteria of stability and evolution of systems. 9. Mathematic modeling of the nonlinear dynamic systems (phase space, trajectories, phase portrait, classification of singular points, attractors, strange attractors as fractals, deterministic chaos, bifurcation diagrams, catastrophes). 10. Dissipative structures in physics, chemistry and biology. 11. Examples of computer modeling, laboratory demonstration of the Belousov-Zhabotinsky. 12. General principles of metabolic regulations (stoichiometric effects: cooperation, competition, stoichiometric autocatalysis; kinetic and adaptive signals; homeostasis, multistability, trigger, oscillator). 13. Metabolic control theory (flux control coefficients, elasticity coefficients, response coefficients, mutual relationships, experimental determination, examples of the use). 14. Prebiotic evolution and origin of life (formation of organic compounds, selection of prebiotic polymers, genesis of quasispecies and hypercycles).
- Literature
- FISCHER, Oldřich. Nerovnovážné soustavy : termodynamika nevratných chemických a buněčných procesů. Edited by Igor Kučera. 1. vyd. Praha: Státní pedagogické nakladatelství, 1987, 154 s. info
- ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, xvi, 1014. ISBN 0198501013. info
- COVENEY, Peter V. and Roger HIGHFIELD. Šíp času :cesta vědou za rozluštěním největší záhady lidstva. 1. vyd. Ostrava: Oldag, 1995, 472 s., [1. ISBN 80-85954-08-7. info
- GLEICK, James. Chaos :vznik nové vědy. Translated by Jaroslav Sedlář - Renata Kamenická. [1. vyd.]. Brno: Ando Publishing, 1996, 349 s. ISBN 80-86047-04-0. info
- Assessment methods (in Czech)
- Jednosemestrová přednáška v rozsahu 2 hod týdně. Zahrnuje i praktickou demonstraci počítačového modelování a vzniku prostorových a časových struktur při reakci Bělousova a Žabotinského. Zkouška (kolokvium)je ústní.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
- Enrolment Statistics (Autumn 2001, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2001/C5340