PřF:C7410 Structure and Reactivity - Course Information
C7410 Structure and Reactivity
Faculty of ScienceAutumn 2004
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
- Teacher(s)
- prof. RNDr. Petr Klán, Ph.D. (lecturer)
- Guaranteed by
- prof. RNDr. Petr Klán, Ph.D.
Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Petr Klán, Ph.D. - Timetable
- Mon 14:00–15:50 03021
- Prerequisites
- organic chemistry, physical chemistry, physics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Analytical Chemistry (programme PřF, D-CH) (2)
- Inorganic Chemistry (programme PřF, D-CH) (2)
- Biochemistry (programme PřF, D-CH) (2)
- Physical Chemistry (programme PřF, D-CH) (2)
- Macromolecular Chemistry (programme PřF, D-CH) (2)
- Environmental Chemistry (programme PřF, D-CH) (2)
- Organic Chemistry (programme PřF, D-CH) (2)
- Organic Chemistry (programme PřF, M-CH)
- Organic Chemistry (programme PřF, N-CH)
- Course objectives
- This course provides an information about the relationship between the structure of organic compounds and their reactivity. Different ways of chemical activation and the courses of the ractions are discussed.
- Syllabus
- 1. Structure and reactivity relationship. Calibration points in chemistry. Inner parameters of the structure and its deformations. Physical properties caused by (a) geometry of nuclei, (b) electron density and its change. Activation and driving force of the chemical reactions. 2. Thermodynamics and kinetics. Thermochemical calculations. Transition state. Hammond and Curtin-Hammett principle. 3. Substituent effects. LFER. Hammett and Taft equation. QSAR. Hyperconjugation. Isotope effects. 4. Dynamic effects. Conformations. The relationship between the cyclization rate constants and the size of the ring. 5. Aromaticity a antiaromaticity. Aromatic ions and dipoles. Aromaticity of the transition state in the pericyclic reactions. 6. Solvent effects. 7. Acids and bases. 8. Ions and radicals. 9. Electron transfer. Marcus equation. 10. Catalysis. Transition metal catalysis. 11. Photochemistry and photophysics. 12. Spin chemistry. Magnetic field effects. 13. Non-classical activation of chemical reactions. 14. Reactive intermediates. Laser flash spectroscopy.
- Literature
- I. Fleming: Hraniční orbitaly a reakce v organické chemii. SNTL, Praha 1983.
- O. Exner: Korelační vztahy v organické chemii. SNTL, Praha 1981
- O. Exner: Struktura a fyzikální vlastnosti organických sloučenin. SNTL, Praha 1985.
- F. A. Carey, R. J. Sundberg: Advanced Organic Chemistry, 3rd edition, Part A: Structure and Mechanisms. Plenum Press, New York, 1993.
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- Teacher's information
- https://is.muni.cz/auth/el/1431/podzim2004/C7410/
- Enrolment Statistics (Autumn 2004, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2004/C7410