PřF:M3121 Probability - Course Information
M3121 Probability and Statistics I
Faculty of ScienceAutumn 2004
- Extent and Intensity
- 2/2/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: z (credit).
- Teacher(s)
- prof. RNDr. Ladislav Skula, DrSc. (lecturer)
RNDr. Marie Forbelská, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Ivanka Horová, CSc.
Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Mon 13:00–14:50 UP1
- Timetable of Seminar Groups:
M3121/02: Wed 7:00–8:50 U1, M. Forbelská - Prerequisites
- M2100 Mathematical Analysis II
Differential and integral calculus of functions of n real variables. Basic knowledge of linear algebra. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Financial and Insurance Mathematics (programme PřF, B-AM)
- Mathematical Biology (programme PřF, B-BI)
- Mathematics - Economics (programme PřF, B-AM)
- Mathematics - Economics (programme PřF, M-AM)
- Mathematics (programme PřF, B-MA)
- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)
- Profesional Statistics and Data Analysis (programme PřF, B-AM)
- Statistics and Data Analysis (programme PřF, B-AM)
- Course objectives
- The basic course of probability and mathematical statistics and introductory course for other theoretically oriented and applied stochastic subjects. The content of the course is axiomatical approach to probability theory, random variables and random vectors, probability distributions and characteristics of the distribution. The last part of the course is dovoted to the laws of large numbers and to the central limit theorem.
- Syllabus
- Elements of probability: axiomatic definition of probability, probability space, conditional probability, independence. Random variables: borel functions, definition of random variable, distribution function, discrete and continuous probability distributions, probability and density function, examples of discrete and continuous random variables, distribution of transformed random variables, pseudorandom numbers. Random vectors: joint distributions, independence, examples of multivariate distributions (multivariate normal and multinomial distributions), distribution of the sum and ratio of random variables, distributions derived from normal distribution, marginal and conditional distributions. Characteristics: expectation, variance, covariance, moments and their properties, covariance and correlation matrices, characteristic function of random vector. Limit theorems: Borel and Cantelli theorem, Cebyshev's inequality, Laws of large numbers, central limit theorem.
- Literature
- Ash, R.B. and Doléans-Dade C.A. Probability and measure theory. Academic Press. San Diego.2000
- MICHÁLEK, Jaroslav. Úvod do teorie pravděpodobnosti a matematické statistiky. Vyd. 1. Praha: Státní pedagogické nakladatelství, 1984, 204 s. info
- Karr, A.F. Probability. Springer. 1992
- Dupač, V. a Hušková, M.: Pravděpodobnost a matematická statistika. Karolinum. Praha 1999.
- Assessment methods (in Czech)
- Výuka: přednáška, klasické cvičení. Zkouška písemná a ústní.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- Enrolment Statistics (Autumn 2004, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2004/M3121