G7451 Course on biomineralization

Přírodovědecká fakulta
podzim 2008
Rozsah
2/0. 2 kr. Doporučované ukončení: k. Jiná možná ukončení: z.
Vyučující
prof. Mihaly Posfai (přednášející), prof. RNDr. Milan Novák, CSc. (zástupce)
prof. RNDr. Milan Novák, CSc. (náhr. zkoušející)
Garance
doc. RNDr. Rostislav Melichar, Dr.
Ústav geologických věd – Sekce věd o Zemi – Přírodovědecká fakulta
Kontaktní osoba: doc. Mgr. Martin Ivanov, Dr.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Předmět si smí zapsat nejvýše 78 stud.
Momentální stav registrace a zápisu: zapsáno: 0/78, pouze zareg.: 0/78, pouze zareg. s předností (mateřské obory): 0/78
Mateřské obory/plány
Cíle předmětu
Main objectives can be summarized as follows: to understand process producing mineral controlled or induced by organisms.
Osnova
  • 1. Introduction to biominerals - definition, occurrence, significance in earth sciences, history of research 2. Main types of biomineral-forming processes 2.1. Biologically-controlled mineralization, BCM - usually intracellular, mineral formation under strict biological control, the product has specific properties that enable the mineral to perform certain functions in the organism 2.2. Biologically-induced mineralization, BIM - usually extracellular, no strict biological control over mineral formation 3. Biomineral species – crystal chemistry and structure - oxides (magnetite, maghemite, hematite, goethite, lepidocrocite, ferrihydrite) - sulfides (greigite, mackinawite, pyrite, sphalerite, wurtzite) - silica - carbonates (calcite, Mg-calcite, dolomite, aragonite, vaterite, amorphous) - phosphates (various types of apatite, amorphous phosphate) - sulphates (gypsum, celestite, barite) - organic minerals (whewellite, weddellite) 4. Biologically-controlled mineralization (BCM) 4.1. Functions of BCM minerals - mechanical functions (protection, support, motion, cutting and grinding) - magnetic sensing - gravity and optical sensing - storage 4.2. Special properties of BCM minerals - uniform particle sizes - unusual or complex, well-defined morphologies - strictly controlled composition and structure (polymorph selection) - controlled aggregation and texture - controlled crystallographic orientation - assembly into hierarchical structures 4.3. How do organisms use the special mineral properties for their biological functions?(Specific examples) - calcification in algae and coccoliths - silica biomineralization by diatoms, radiolarians and plants - magnetic sensing by bacteria and pigeons using magnetite, maghemite and greigite - magnetic oxides and sulfides for grinding and protection (chiton and deep-sea snail) - carbonate shell structures of molluscs, brachiopods, sea urchins - carbonate structures in eggshells - iron storage in ferritin - bones and teeth of vertebrates 4.4. Principles of BCM, control mechanisms over mineral formation at the organic/inorganic interface - chemical control (solubility, supersaturation, homogeneous and heterogeneous nucleation, crystal growth mechanisms, crystal growth inhibition, polymorphism, phase transitions) - spatial control (membrane-bounded phospholipid vesicles, protein vesicles, cellular assemblies, macromolecular frameworks) - structural control (organic matrices as mechanical frameworks and nucleation sites) - morphological control (symmetry breaking, vectorial regulation, pattern formation) - constructional control (examples for structural hierarchy: coccoliths and bones) 4.5. The genetic background of biologically controlled mineralization - results from the genetic engineering of magnetotactic bacteria 4.6. Biomimetic materials synthesis and applications - synthesis in confined reaction spaces - template-directed materials synthesis - morphosynthesis 5. Biologically-induced mineralization (BIM) 5.1. Mineral-forming processes at the cell wall - soluble biopolymers, gas/ion exchange, membrane transport, enzyme activity, electron transfer, nucleation and surface layer proteins 5.2. Biologically-induced metal oxide and sulfide mineralization - iron and manganese reduction - iron and manganese oxidation - sulfate reduction and sulfide mineral formation in marine environments - metal sulfide formation in contaminated environments; the use of BIM processes for bioremediation 5.3. Pathological mineral formation - stones, calcification of arteries, minerals in the brain 6. Geomicrobiology: microbes and geochemical cycles - concept of global geochemical cycles - the effects of biomineralization on the cycles of C, Ca, Si, and P 7. Biomineralization and evolutionary history – or, biominerals through the geological time - minerals and the origin of life – current theories - the fossil record of biominerals – facts and problems - the phylogenetic distribution of mineralized skeletons and magnetotactic bacteria - extinctions and their effects on biomineralization Practical sessions - collection and magnetic enrichment of magnetotactic bacteria - observation of magnetotaxis using optical microscopes - shell structures under the optical microscope
Metody hodnocení
class discussion
Vyučovací jazyk
Angličtina
Informace učitele
Suggested reading Mann, S.: Biomineralization. Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, Oxford, 2001. Dove, P.M., De Yoreo, J.J., Weiner, S.: Biomineralization. Reviews in Mineralogy and Geochemistry, Vol 54, Mineralogical Society of America, Washington, D.C., 2003. Baeuerlein, E.: Handbook of Biomineralization, Vol 1-3, Wiley-VCH, Weinheim, 2007. Banfield, J.F., Nealson, K.H.: Geomicrobiology: Interactions between microbes and minerals. Reviews in Mineralogy and Geochemistry, Vol 35, Mineralogical Society of America, Washington, D.C., 1997.
Další komentáře
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je vyučován jednorázově.
Výuka probíhá blokově.
Poznámka k četnosti výuky: týdenní kurz.

  • Statistika zápisu (nejnovější)
  • Permalink: https://is.muni.cz/predmet/sci/podzim2008/G7451