C7280 Electrode Kinetics

Faculty of Science
Autumn 2013
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Libuše Trnková, CSc. (lecturer)
Guaranteed by
prof. RNDr. Libuše Trnková, CSc.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
Physical Chemistry I and II, especially the part: Kinetics
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Goal of the topic lecture Electrode kinetics is to inform students of chemistry about: (a) kinetics of electrode processes on a charged interfaces, (b) different types of electro-active systems in equilibrium and out of equilibrium conditions, (c) the influence of experimental conditions on the rate constant of electrode reactions, and (d) quantification of electrochemical data with aim to calculate kinetic parameters.
Syllabus
  • 1. Nature of electrode reactions. Fermi energy level. The effect of potential on Fermi level of electrons. Border orbitals in redox reactions. Thermodynamics and kinetics. Methods of electrode reactions study.

    2. Equilibrium electrochemistry. Inner and outer potentials, electrochemical and electrode potentials, galvanic cell and its thermodynamics, classification of electrodes, standard electrode potentials.

    3. Motion of ions in solutions (diffusion and migration), conductivity and movement, diffusion (liquid) potential, ion-selective electrodes, biomembranes. Solutions of electrolytes during current pass.

    4. Structure of electrode/electrolyte interface. Electric double layer (EDL) and its models (Helmholtz, Gouy- Chapman, Stern, Graham). Specific adsorption. Electrocapillarity maximum. Integral and differential capacity of EDL. EDL on mono-crystalline and poly-crystalline materials. Electrokinetic phenomena, zeta potential, sedimentation potential, electrophoresis, electroosmosis.

    5. Mechanism of electron transfer in homogeneous (solutions) and heterogeneous media (electrode/solution), heterogeneous rate constants, exchange current, microscopic interpretation of electron transfer Marcus theory, overvoltage, Butler Volmer equation, charge transfer coefficient.

    6. Mass transport. Migration, diffusion, convection. Diffusion, Fick's laws. Limiting diffusion current (planar and spherical diffusion), polarization overpotential, Nernst diffusion layer. Rate determining step (rds).

    7. Reversible and irreversible reactions, values of heterogeneous rate constants, Tafel law, effect of EDL and specific adsorption on electrode kinetics, electrode process without and with chemical reaction (preceding, inserted, and following chemical reaction). Consecutive reactions.

    8. Hydrodynamic systems: rotating disk electrodes (single and double). Hydrodynamic electrodes in out of stationary techniques. Multiple electron transfer. Investigation of coupled homogeneous reactions

    9. Kinetic parameter in individual electrochemical methods. Possible use of potentiostatic and galvanostatic methods for investigation of electrode processes. Criteria of reversibility of electrode processes.

    10. Impedance, in phase and out of phase components, serial and parallel circuit of an electrochemical cell. Randles circuit, Warburg impedance. The faradaic impedance for a simple electrode process; calculation of heterogeneous rate constants from impedance data (electrochemical impedance spectrum EIS).

    11. Electrode reactions classification according to the type of chemical reactions. Electro-synthesis. Electrodeposition and underpotential deposition. Bockris mechanism of metal electrodeposition. Chemically modified electrodes, polymer electrodes. Corrosion and its kinetics.

    12. Non-electrochemical probes of electrodes and electrode processes. The characterization of electrode surfaces. In situ and ex situ spectroscopic techniques, in situ and ex situ microscopic techniques, and other in situ techniques. Photoelectrochemistry. Electrochemiluminescence.
Literature
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press, 1998, 1014 s. ISBN 0198501013. info
  • BRETT, Christopher M. A. and Ana Maria Oliviera BRETT. Electroanalysis. Oxford: Oxford University Press, 1998, 88 s. ISBN 0198548168. info
  • FISHER, A. C. Electrode dynamics. Oxford: Oxford University Press, 1996, 83 s. ISBN 0-19-855690-X. info
  • BARD, Allen J. and Larry R. FAULKNER. Electrochemical methods : fundamentals and applications. 2nd ed. New York: John Wiley & Sons, 2001, xxi, 833. ISBN 0471043729. info
Teaching methods
Lecture. Graduates of this course will be equipped with skills for assessment of electrode processes at phase interfaces electrode/solution.
Assessment methods
Oral examination is completed by the proving test.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2010 - only for the accreditation, Autumn 2000, Autumn 2001, Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2005, Autumn 2006, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023, Autumn 2024.
  • Enrolment Statistics (Autumn 2013, recent)
  • Permalink: https://is.muni.cz/course/sci/autumn2013/C7280