PřF:Bi7090 Eukaryotic cells - Course Information
Bi7090 Molecular biology of eukaryotes
Faculty of ScienceAutumn 2014
- Extent and Intensity
- 2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- prof. RNDr. Jan Šmarda, CSc. (lecturer)
prof. RNDr. Renata Veselská, Ph.D., M.Sc. (lecturer)
prof. RNDr. Jana Šmardová, CSc. (lecturer) - Guaranteed by
- prof. RNDr. Jan Šmarda, CSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: prof. RNDr. Jan Šmarda, CSc.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Thu 12:00–13:50 B11/305
- Prerequisites
- ( Ex_3065 Molekulární biologie || Imp_9115 Molekulární biologie || B3120 Molecular and cell biology || B4030 Molecular biology || B5740 Molecular biology || B6130 Molecular biology || B7940 Molecular biology || B4020 Molecular biology || Bi4020 Molecular biology ) && ( Bi6081 Bachelor state exam of Molecular biology and genetics || Bi6087 Bachelor state exam of Cellular and molecular diagnostics || Bi6089 Bachelor state exam of Anthropogenetics || Bi6082 Bachelor state exam of General biology || SOUHLAS)
Essential molecular biology. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Molecular Biology and Genetics (programme PřF, N-EXB)
- Molecular Biology and Genetics (programme PřF, N-EXB, specialization Antropogenetika)
- Course objectives
- At the end of the course students will acquire general knowledge on recent developments within the field of molecular biology of eukaryotic cell. He/she will understand molecular mechanisms of cell cycle and principles of its regulation, structure of DNA in chromatin, principles of signal transduction and programmed cell death. Using this knowledge, he/she should describe and discuss mechanisms of cancerogenesis be able to delineate the major differences between healthy and cancer cells. In addition, students will understand the ways how eukaryotic cells communicate with neighbour cells and extracellular matrix, how nerve-, muscle- and immune systems function and what are main principles of intramolecular traficking. This provide students with capabilites to judge general rules of eukarytic cells functioning in multicellular organisms.
- Syllabus
- 1. Molecular mechanisms of cell cycle regulation: phases, control points, cyclins, CDKs, principles of cell cycle regulation, cell cycle deregulation and tumor formation). 2. Cell signalling I: principles, signal types, receptor types. 3. Cell signalling II: SH2 domain, secondary messengers, JAK/STAT,MAP, Ras, Raf kinases, protein G, cAMP, Ca++ ions in signal transduction, PKA, PKC, PKCa,signals and cellular skeleton. 4. Cell-cell and cell-matrix interactions: matrix types, structure, function, collagen, hyaluronic acid, proteoglycans, cadherins, laminin, fibronectin, selectins, integrins, types cell-cell interactions. 5. Molecular mechanisms of neural and muscle systems: neural cells, synapses,action potential, structure of channel proteins, membrane permeability, neuromuscular connections, thin and thick filaments, molecular mechanisms of muscle contraction, muscle cell differentiation, Myo protein. 6. Molecular immunology: hematopoietic cell differentiation, growth factors in hematopoiesis, lymphokines,monokines, interferons, TNF, antigen processing, MHCI and MHCII. 7. Molecular principles of tumor formation I: tumor cells, malignant transformation, roles of oncogenes, tumor suppressors and cell death regulators in tumor formation). 8. Molecular principles of tumor formation II: proto-oncogenes and their products, oncogene co-operation in carcinogenesis, apoptosis, clinical implications, viruses in malignant transformation. 9.Chromatin: nucleosomes, methods of chromatin analysis, importance of chromatin changes. 10. Yeast model system: live cycle, mating type determination, mating type switching, yeast artificial, chromosomes. 11. Regulated protein degradation: protein labeling by ubiquitin, proteasome, other ways of protein labeling for degradation, the role of ubiquitin system in disease pathogenesis. 12. Protein translocation: protein transfer to endoplasmic reticulum, signal sequence, chaperons, chaperonins, smooth ER and lipid synthesis, Golgi apparatus - organisation, function, metabolisms of lipids in GA, protein export from GA, mechanisms of vesicular transport, phagocytosis.
- Literature
- Teaching methods
- Lectures including brief discussions.
- Assessment methods
- Examination is based on written test is required. At least 50% of correct answers are required to pass.
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Listed among pre-requisites of other courses
- Teacher's information
- http://www.sci.muni.cz/labweb/prednask/predn.html
- Enrolment Statistics (Autumn 2014, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2014/Bi7090