PřF:Bi9410 Structural Biology - Course Information
Bi9410 Structural Biology
Faculty of ScienceAutumn 2014
- Extent and Intensity
- 2/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- Mgr. Jan Brezovský, Ph.D. (lecturer)
Mgr. Eva Šebestová, Ph.D. (lecturer)
Mgr. Martina Damborská (assistant) - Guaranteed by
- prof. Mgr. Jiří Damborský, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: Mgr. Jan Brezovský, Ph.D.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Wed 15:00–16:50 B11/235
- Prerequisites
- Knowledge on the level of basic lectures of biochemistry or molecular biology.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Molecular Biology and Genetics (programme PřF, B-EXB, specialization Antropogenetics)
- Course objectives
- On successful completion of the course, students will be able to:
describe structures of biomolecules and experimental methods for their determination
obtain structures of biomoleculs from suitable databases
identify possible errors in the protein structure
predict a structure of biomolecules and theirs complexes
analyze protein structures to acquire information about their function, dynamics and stability
evaluate an effect of mutation on a protein function - Syllabus
- Structural biology is a scientific discipline derived from molecular biology, biochemistry and biophysics. It focuses on the molecular structure of biomacromolecules, especially proteins and nucleic acids which are essential components of all living organisms. Structural biology enables us to determine a structure of biomacromolecules and to investigate its relationship to the biological role of the molecules.
- Within this course, the following topic will be addressed:
- 1. Structure of biomacromolecules – composition, methods for determination, application in biology, visualization.
- 2. Databases of experimental structures – retrieval and evaluation of macromolecular structures; selected structural databases.
- 3. Models of structures – databases of models, methods for model quality evaluation, preparation of models.
- 4. Stability and dynamics of macromolecules – analysis of molecular dynamics and stability; databases.
- 5. Analysis of protein structure – identification of important regions: binding/active sites, transport pathways, flexible regions, binding/catalytic amino acids.
- 6. Prediction of structure of macromolecular complexes.
- 7. Protein-protein complexes – evaluation of complex, analysis of interactions; databases.
- 8. Protein-DNA complexes – evaluation of complex, analysis of interactions; databases.
- 9. Protein-ligand complexes – evaluation of complex, analysis of interactions; databases.
- 10. Modification of protein structure – evaluation of the effect of mutation on protein structure and function.
- 11. Application of structural biology – biological research, drug design and development, design of biocatalyst.
- Literature
- Textbook Of Structural Biology, A. Liljas, L. Liljas, J. Piskur, G. Lindblom, P. Nissen, M. Kjeldgaard, World Scientific Publishing Company, 2009
- Structural Bioinformatics, J. Gu &P. E. Bourne, Wiley-Blackwell, 2009
- Protein Stucture and Function, G. A. Petsko & D. Ringe, New Science Press, 2004
- Computational Structural Biology: Methods and Applications, T. Schwede & M. C. Peitsch, World Scientific Publishing Company, 2008
- Teaching methods
- lectures
- Assessment methods
- multiple choice test, 9 correct answers out of 25 are needed to pass
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Enrolment Statistics (Autumn 2014, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2014/Bi9410