PřF:Bi9690en Synthetic Biology - Informace o předmětu
Bi9690en Synthetic Biology
Přírodovědecká fakultapodzim 2023
- Rozsah
- 2/0/0. 2 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- Mgr. Karel Říha, Ph.D. (přednášející)
Ing. RNDr. Martin Marek, Ph.D., MBA (přednášející)
Panagiotis Alexiou, PhD (přednášející)
Stanislav Mazurenko, PhD (přednášející) - Garance
- Mgr. Karel Říha, Ph.D.
Ústav experimentální biologie – Biologická sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Karel Říha, Ph.D.
Dodavatelské pracoviště: Středoevropský technologický institut - Rozvrh
- St 10:00–11:50 B11/335
- Předpoklady
- Students should possess knowledge of genetics, biochemistry and molecular biology at the level of basic university courses.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
Předmět si smí zapsat nejvýše 50 stud.
Momentální stav registrace a zápisu: zapsáno: 6/50, pouze zareg.: 1/50, pouze zareg. s předností (mateřské obory): 0/50 - Mateřské obory/plány
- Biochemie a molekulární biologie (program LF, D-BIOM) (2)
- Biochemie (angl.) (program PřF, N-BCH)
- Biochemie (program PřF, B-BCH)
- Biochemie (program PřF, B-BIC)
- Biochemie (program PřF, N-BCH)
- Biochemie (program PřF, N-BIC)
- Biochemie (program PřF, N-CH)
- Biochemistry and Molecular Biology (program LF, D-BIOM_A) (2)
- Biomolecular chemistry and bioinformatics (program PřF, D-BINFOA_) (2)
- Biomolekulární chemie a bioinformatika (program PřF, D-BINFO_) (2)
- Biomolekulární chemie (angl.) (program PřF, D-BCH4) (2)
- Biomolekulární chemie (program PřF, D-BCH4) (2)
- Bio-omika (angl.) (program PřF, D-VZP) (2)
- Bio-omika (program PřF, D-VZP) (2)
- Cell and Tissue Morphology (program LF, D-BIOM_A) (2)
- Genomics and Proteomics (program PřF, D-GEPRA_) (2)
- Genomika a proteomika (angl.) (program PřF, D-BCH4) (2)
- Genomika a proteomika (angl.) (program PřF, N-BCH)
- Genomika a proteomika (program PřF, D-BCH4) (2)
- Genomika a proteomika (program PřF, D-GEPR_) (2)
- Genomika a proteomika (program PřF, N-BCH)
- Genomika a Proteomika (program PřF, N-BIC)
- Molecular and Cell Biology (program PřF, N-MCBE)
- Molecular Medicine (program LF, D-BIOM_A) (2)
- Molekulární biologie a genetika (program PřF, B-EMB)
- Molekulární biologie a genetika (program PřF, B-EXB)
- Molekulární biologie a genetika (program PřF, B-EXB, směr Antropogenetika)
- Molekulární biologie a genetika (program PřF, B-EXB, směr Molekulární biologie a genetika)
- Molekulární biologie a genetika (program PřF, N-EXB)
- Molekulární biologie a genetika (program PřF, N-EXB, směr Antropogenetika)
- Molekulární biologie a genetika (program PřF, N-EXB, směr Molekulární biologie a genetika)
- Molekulární biologie a genetika (program PřF, N-MBG)
- Molekulární medicína (program LF, D-BIOM) (2)
- Morfologie buněk a tkání (program LF, D-BIOM) (2)
- Multidisciplinární studia (program PřF, KOS)
- Strukturní biologie (angl.) (program PřF, D-VZP) (2)
- Strukturní biologie (program PřF, D-VZP) (2)
- Cíle předmětu
- Through the course, the students will gain in-depth knowledge in the field of contemporary synthetic biology. On completion of the course, the student should be able to: •describe origin and features of life • describe methods and approaches used for gene and genome engineering • describe fundamental principles of synthetic biology and engineering of living systems • describe how the regulation of gene expression and properties of gene products can be altered via synthetic biology approaches • propose synthetic gene regulatory circuits exploitable in biotechnology and biomedicine • describe how protein engineering yields the protein with novel functionality, and explain the theoretical principles of computer-aided de novo protein (enzyme) design • describe how to expand the building bricks of living systems, and how to create the synthetic protein nanomachine, the virus-inspired system or the artificial cellular organelle • depict the concepts of metabolic engineering and designing de novo biosynthetic cascades • describe how synthetic biology may alter the properties of the virus, the cell or the whole organism • apply a scientific approach to the planning, execution, and interpretation of synthetic biology projects with the goal to create replicating biological systems with new functionalities that can be regulated and controlled • characterize synthetic biology strategies and tools exploitable in immunotherapy, gene therapy, cancer therapy, epigenetic therapy, sustainable agriculture and biofuel production • critically analyse, present and defend scientific literature in the field of synthetic biology • understand ethical issues associated with synthetic biology
- Výstupy z učení
- By completing this course, students will gain insight into synthetic biology, which is a rapidly evolving field at the intersection of biology, biochemistry, biotechnology, and informatics. They will grasp the fundamental principles and concepts of synthetic biology, theoretically acquire methodological approaches, and become familiar with the potential applications of synthetic biology in biomedicine, agriculture, and other areas of human activity. Additionally, discussions will address the societal impact and ethical aspects of this emerging discipline.
- Osnova
- Over the past decades sufficient understanding of how biological systems work has been gained to allow advanced alteration of living systems driven by engineering principles. This has led to a new scientific discipline called synthetic biology that nurtures on technology breakthroughs in genomics, proteomics, genetic engineering, protein engineering, systems biology and bioinformatics to design new or extensively redesign existing biological properties for applications in biotechnology and biomedicine. In this lecture course students will grasp concepts in synthetic biology, become familiar with basic methodological approaches and learn about wide range of possible applications in science and technology. • Origin of life • Synthetic Biology – basic principles • Basic concepts in engineering • From genetic engineering to synthetic genomes • Protein engineering I. – computer-aided rational design; de novo protein design • Protein engineering II. – in-lab directed evolution techniques; semi-rational approaches • Design of large protein nanomachines, virus-like vehicles, and gene therapy tools • Expanding building bricks of life, genetic code expansion, usage of non-standard amino acids; optogenetics and photocaging in synthetic biology • Metabolic engineering, designing and realizing new biosynthetic (enzymatic) cascades • Synthetic epigenetics, epigenome targeting; synthetic biology and drug discovery • Artificial organelles • Minimal cells, artificial cells, synthetic ecosystems • Future directions and ethical considerations
- Literatura
- Synthetic biology : parts, devices and applications. Edited by Christina D. Smolke. Weinheim: Wiley-VCH, 2018, xvi, 409. ISBN 9783527330751. info
- Synthetic biology : tools for engineering biological systems. Edited by Daniel G. Gibson - Clyde A. Hutchison - Hamilton Othanel Smith - J. Cr. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 2017, viii, 280. ISBN 9781621821182. info
- Výukové metody
- Lectures, class discussion, study of primary literature
- Metody hodnocení
- Written or oral exam.
- Vyučovací jazyk
- Angličtina
- Informace učitele
- https://is.muni.cz/predmet/sci/Bi9690en
Karel Říha, email: karel.riha@ceitec.muni.cz Martin Marek, email: martin.marek@recetox.muni.cz - Další komentáře
- Studijní materiály
Předmět je vyučován každoročně.
- Statistika zápisu (podzim 2023, nejnovější)
- Permalink: https://is.muni.cz/predmet/sci/podzim2023/Bi9690en