G6101k Methods of laboratory research of minerals and rocks

Faculty of Science
Autumn 2023
Extent and Intensity
3/1/0. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
Mgr. Dalibor Všianský, Ph.D. (lecturer)
Mgr. Pavel Pracný, Ph.D. (lecturer)
Zbyněk Cincibus (assistant)
Guaranteed by
Mgr. Dalibor Všianský, Ph.D.
Department of Geological Sciences – Earth Sciences Section – Faculty of Science
Contact Person: Ing. Jana Pechmannová
Supplier department: Department of Geological Sciences – Earth Sciences Section – Faculty of Science
Timetable
Fri 3. 11. 13:00–16:00 G2,02003, Fri 1. 12. 10:00–16:00 G1,01004, Fri 12. 1. 11:00–12:00 G2,02003
Prerequisites (in Czech)
! G6100 Methods of laboratory research && ! G6101 Methods of laboratory research && !NOW( G6101 Methods of laboratory research ) && ( (!(PROGRAM(B-GE)||PROGRAM(D-GE4)||PROGRAM(N-GE)||PROGRAM(D-GE)||PROGRAM(C-CV))) || (NOW( G0101 Occupational healt and safety )&&NOW( C7777 Handling chemical substances )))
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Main objectives are basic knowledges in the laboratory research of rocks and minerals; especially in:
- basic operations (sampling and sample treatment, mineral separation)
- chemical methods (wet silicate analysis)
- instrumental methods (electron microscopy, electron microprob)
- spectral analyses in gamma, X-ray, UV, VIS, IR range
- electrochemical and chromatographic methods
The course is aimed to students of the Bachelor programs and it involves lab practices.
Learning outcomes
After the course, students will be able to: determine error in a dataset of measurements;
analyse results of a given method;
devise a sampling procedure for a given problem;
compare suitability of various methods depending on the problem.
Syllabus
  • Sampling and sample treatment: Sampling of rocks and minerále in the field, technical tools. Optimum sample size, representativeness. Criteria for the choice of suuitable analytical methods (purpose, price, sensitivity, required sample size). Sample preparation for analysis - crushing, sieving, homogenisation. Mineral separation techniques: gravitational (panning, heavy liquid separation), magnetic (with permanent magnet, electromagnetic). Elutriation (Stokes' law, Kopecký's elutriator), flotation. Hand picking. Preparation of thin and polished sections.
  • Macroscopic determination of mineral and rock properties: subjective colour scale, hardness, scratch, smell, cleavage, fluorescence, radioactivity. Density measurement. Refractive index measurement. Mineral luminescence, radioactivity, radiographic methods.
  • X-ray methods: Theoretical basics (Bragg's equation). Powder method, diifractometer arrangement. Specimen preparation. Evaluation of X-ray patterns - qualitative analysis, phase identification. Quantitative phase analysis (RIR, internal standard method). Determination of lattice parameters, Rietveld's refinement method. Monocrystal methods. The possibilities of X-ray data usage.
  • Thermal methods: Differential thermal analysis - method principles, thermal reactions of minerals, instrumentation. Interpretation of DTA and TG patterns, qualitative and quantitative analysis. Differential calorimetry, dilatometry, thermoluminiscence, decrepitometry. Examples of application of thermal methods in geology.
  • Electron microscopy Basics of scanning and transmission electron microscope, imaging modes. Electron diffraction. Image analysis.
  • Electron microanalysis Wavelength-dispersive method, energy-dispersive method. Less common microanalytical methods (ion microprobe, laser ablation probe). X-ray fluorescence spectroscopy.
  • Chemical analysis: Analytical error, accuracy and rightness of the results, relative and absolute error, relative and absolute error, systematic, random and gross error, normal distribution of random errors, standard deviation, error propagation, confidence interval. Classification of analytical methods, their applicability. Choice of appropriate method, direct and indirect methods, analytical costs.
  • Classical methods: Gravimetric methods, precipitation, filtration, decanting, examples of usage (determination of SiO2, S), typical analytical error. Volumetric methods, titration, titration agent, indicators, examples of usage (complexometric determination of Ca, Mg, Al, oxidimetric determination of Fe, acidimetric determination of SiO2), typical analytical error. Separation methods, extraction, ion exchangers.
  • Instrumental methods. Classification (optical - spectral, non-spectral, electrochemical, chromatographic), usage, typical errors, evaluation in relative methods (calibration curve, standard addition, inner standard method).
  • Emission spectral methods Spectrum formation (radio-wave, micro-wave, far-, near- and medium infrared, ultraviolet, X-ray, gamma-ray range), possible uses, methods (emission spectrography, flame photometry, emission spectrometry with inductively coupled plasma, neutron activation analysis).
  • Absorption spectral methods: Formation of absorption spectra, Lambert-Beer law, methods (vibration spectroscopy, atomic absorption spectroscopy, infrared spectrometry), possible uses, typical instrumental arrangement.
  • Elektrochemical and chromatographic methods: Electrochemical potentials, pH measurement, ion-selective electrodes; polarography. Chromatography, instrumental arranfgement, mobile and stationary phase, gas- and liquid chromatography, appplication, advantages, errors.
Literature
    recommended literature
  • SKOOG, Douglas A., Donald M. WEST, F. James HOLLER and Stanley R. CROUCH. Analytická chemie. Translated by Karel Nesměrák - Václav Červený - Tomáš Křížek - Eliška. Vydání první. Praha: Vysoká škola chemicko-technologická v Praze, 2019, xxx, 950. ISBN 9788075920430. info
  • ČAPEK, Ladislav, Kateřina TĚSNOHLÍDKOVÁ, Karel SLAVÍČEK, Dalibor VŠIANSKÝ and Pavel PRACNÝ. Technologie výroby a archeometrické studium středověké keramiky (Production Technology and Archaeometrical Study of Medieval Pottery). Plzeň: Západočeská univerzita v Plzni a Masarykova univerzita v Brně, 2018, 197 pp. první vydání. ISBN 978-80-261-0811-5. info
  • SKOOG, Douglas A., Donald M. WEST, F. James HOLLER and Stanley R. CROUCH. Fundamentals of analytical chemistry. 9th edition. Belmont: Brooks/Cole, 2014, 1 svazek. ISBN 9780495558286. info
  • FAIMON, Jiří. Základní metody analytické geochemie. VŠ skripta, 1. vyd. Brno: Masarykova univerzita, 1992, 147 s. ISBN 80-210-0498-3. info
Teaching methods
compulsory/optional consultations, reading
Assessment methods
Exercises, final test
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course can also be completed outside the examination period.
The course is taught once in two years.
Information on the per-term frequency of the course: Bude otevřeno v podzimním semestru 2023/2024.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 2009, Autumn 2011, Autumn 2011 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021.
  • Enrolment Statistics (recent)
  • Permalink: https://is.muni.cz/course/sci/autumn2023/G6101k