PřF:M6201 Non-linear dynamics - Course Information
M6201 Non-linear dynamics
Faculty of Sciencespring 2012 - acreditation
The information about the term spring 2012 - acreditation is not made public
- Extent and Intensity
- 2/2/0. 4 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Lenka Přibylová, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Lenka Přibylová, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Prerequisites
- Any course of calculus and linear algebra.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Financial and Insurance Mathematics (programme PřF, B-AM)
- Finance Mathematics (programme PřF, N-AM)
- Mathematical Biology (programme PřF, B-BI)
- Mathematical Biology (programme PřF, N-BI)
- Mathematical Modelling and Numeric Methods (programme PřF, N-MA)
- Mathematics - Economics (programme PřF, B-AM)
- Mathematics - Economics (programme PřF, N-AM)
- Modelling and Calculations (programme PřF, B-AM)
- Profesional Statistics and Data Analysis (programme PřF, B-AM)
- Statistics and Data Analysis (programme PřF, B-AM)
- Statistics and Data Analysis (programme PřF, N-AM)
- Course objectives
- The aim of the course is to present introduction to nonlinear dynamics of continuous and discrete models, explain one and multiparametric bifurcations and chaotic dynamics. Mentioned nonlinear phenomena will be illustrated in models from various science fields (biology, biochemistry, physics, ecology, economy etc.)
- Syllabus
- Basic concepts: dynamical systems, nonlinear autonomous systems, parameter dependence, continuous bifurcations (bifurkace saddle-node, hysteresis, Hopf bifurcation, reduction to central manifold, multiparametric bifurcations), discrete bifurcations (fold, flip, period doubling a universality, deterministic chaos, Neimark-Sacker bifurcation), Poincaré section a bifurcations of cycles, chaos in continuous systems.
- Literature
- Studijní materiál v e-learningové podobě vytvoření pro předmět přednášející.
- KUZNECOV, Jurij Aleksandrovič. Elements of applied bifurcation theory. 2nd ed. New York: Springer-Verlag, 1998, xviii, 591. ISBN 0387983821. info
- CHOW, Shui-Nee and Jack K. HALE. Methods of bifurcation theory. 2nd corr. print. New York: Springer-Verlag, 1996, xv, 525 s. ISBN 0-387-90664-9-. info
- Teaching methods
- Two hours of theoretical lecture and two hours of class exercises weekly. Seminary requires active participation of students.
- Assessment methods
- final exam contains written test and subsequent oral part.
- Language of instruction
- Czech
- Further Comments
- The course is taught once in two years.
The course is taught: every week.
- Enrolment Statistics (spring 2012 - acreditation, recent)
- Permalink: https://is.muni.cz/course/sci/spring2012-acreditation/M6201