C6240 Xenobiochemistry

Faculty of Science
Spring 2012
Extent and Intensity
2/0/0. 2 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
RNDr. Miroslav Machala, CSc. (lecturer)
Guaranteed by
prof. RNDr. Zdeněk Glatz, CSc.
Department of Biochemistry – Chemistry Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Glatz, CSc.
Supplier department: Department of Biochemistry – Chemistry Section – Faculty of Science
Timetable
Thu 15:00–16:50 C05/114
Prerequisites
Basic knowledge of general principles in chemistry and biochemistry.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
At the end of the course students should be able to understand and explain principles of metabolism and effects of xenobiotics and their metabolites in organism. The main goal is to connect the current state of knowledge in xenobiochemistry and toxicology with physiological and biochemical processes so that it would enable to deepen the understanding of students to both mechanisms of action of xenobiotics and their consequences for both individuals and populations including humans and wild life. At the end of this course, students should have a basic understanding of metabolism of various classes of naturally occuring and anthropogenic chemicals (drugs, environmental contaminats) within organism; effects of xenobiotics at both cellular and organismal levels; impact of xenobiotics on carcinogenesis, endocrine regulation and development and other basic types of toxic effects of xenobiotics; chemoprotective chemicals.
Syllabus
  • 1-2) Transport, metabolism and accumulation of xenobiotics within body; regulation and roles of Phase I, II and III biotransformation enzymes (cytochromes P450, transferases, ABC transporters); antioxidant enzymes. 3) An overview of xenobiotics - secondary plant metabolites, dietary compounds and toxins anthropogenic environmental pollutants, pharmaceuticals (cytostatics, hormones, neuroleptic compounds); main exposure routes; pharmacokinetics, toxic side-effects of pharmaceuticals. 4) Ah receptor and other bHLH/PAS protein family, Ah receptor-dependent metabolic pathways of xenobiotics; toxic effects of AhR ligands; 5-6) Nuclear receptors involved directly in regulation of metabolism of xenobiotics (CAR, PXR, PPAR, RAR/RXR) and other nuclear receptors (ER, AR, PR, GR, TR,) and their ligands (agonists and antagonists); transactivation of nuclear receptors in regulation of enzymes of metabolism of xenobiotics and endogenous compounds; disruption of physiological functions of receptors based on modulation of target gene expression. 7-9) Metabolism of various classes of xenobiotics (monooxygenation, reduction, hydrolysis, conjugation); bioactivation of xenobiotics to toxic metabolites. 10-12) General overview of effects of xenobiotics on transcriptional and metabolic regulation, cellular signaling and cell-to-cell junctions. Basic types of toxicity of xenobiotics (genotoxicity, tumor promotion, endocrine disruption, neurotoxicity, immunotoxicity). 13) Chemoprotective compounds - sources and mechanims of action.
Literature
  • Josephy P.D. et Mannervik B.: Molecular Toxicology, 2nd ed., OUP, 2006
Teaching methods
Lectures with demonstrations.
Assessment methods
written test (12 questions, approximately 45-60 min.)
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course is taught annually.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019, Spring 2020, Spring 2021.
  • Enrolment Statistics (Spring 2012, recent)
  • Permalink: https://is.muni.cz/course/sci/spring2012/C6240