F4050 Introduction to Microphysics

Faculty of Science
Spring 2023
Extent and Intensity
4/2/0. 5 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. Mgr. Vít Kudrle, Ph.D. (lecturer)
doc. Mgr. Tomáš Hoder, Ph.D. (seminar tutor)
doc. Mgr. Pavel Souček, Ph.D. (seminar tutor)
Guaranteed by
prof. Mgr. Vít Kudrle, Ph.D.
Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Contact Person: prof. Mgr. Vít Kudrle, Ph.D.
Supplier department: Department of Plasma Physics and Technology – Physics Section – Faculty of Science
Timetable
Thu 13:00–14:50 F1 6/1014, Fri 12:00–13:50 F2 6/2012
  • Timetable of Seminar Groups:
F4050/01: Thu 15:00–16:50 F3,03015, T. Hoder
F4050/02: Mon 10:00–11:50 F1 6/1014, P. Souček
Prerequisites (in Czech)
F1030 Mechanics && F1050 Thermics and molecular physics && (! F4050E Introduction to Microphysics ) && !NOWANY( F4050E Introduction to Microphysics , F4100 Introduction to Microphysics , F4100E Introduction to Microphysics )
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
Main goal of the course is to ease the transition from a classical, deterministic physics to a new, probabilistic, quantum physics. It is mostly based on fundamental experiments, which were clasically inexplainable but very easily understandable under a new paradigm. The course serves as a gradual preparation for subsequent, much more rigorous, Fundamentals of quantum mechanics.
Learning outcomes
After finishing the course the student should:
-name, describe and explain the fundamental experiments, which have shown the limitations of classical physics
-understand the microscopic building blocks of all matter
-understand the fundamentals of quantum description of some system
-be acquainted with basic methods, how to study matter
-undestand the physical meaning of the wave function and its probabilistic interpretation
-be able to continue in subsequent, much more rigorous, course Fundamentals of quantum mechanics
Syllabus
  • 1. Atomic structure of matter: arguments from chemistry, crystallography, diffraction, microscopy (TEM, STM, AFM)
  • 2. Black body radiation: laws of Planck, Jeans, Wien, Stefan-Boltzmann.
  • 3. Photons and de Broglie waves: light waves vs photons (two slit experiment, photoelectric effect, Compton effect, etc.). Electrons and de Broglie waves. Wave particle duality.
  • 4. Fundamentals of quantum mechanics. Schroedinger equation, wave function, probabilistic interpretation. Heisenberg relations. Potential well - energy spectrum, transitions, degeneration, tunneling.
  • 5. Electronic structure of atom - quantisation of energy and momentum. Spin. Pauli's exclusion principle. Magnetic effects - Stern-Gerlach, Zeeman. Periodic table of elements, aufbau principle. Emission and absorption spectroscopy. X-rays. LS coupling.
  • 6. Molecules and crystals: types of chemical bond, molecular spectrscopy. Band structure in crystals. How much filled is the band - metal/semiconductor/isolator. Semiconductor applications - P, N doping, PN junction, diode, transistor, IC. Crystallography: X ray diffraction, Bragg law.
  • 7. Nuclear physics: Rutherford experiment. Mass-energy equivalence. Nuclear reactions, nuclear models, alpha, beta decay, fission, fusion.
  • 8. System of building blocks of matter: leptons, quarks, hadrons, mesons, fermions, bosons, intermediary bosons. Basic methods of investigating the subatomic particles - accelerators, detectors. Link between elemntary particle physics and cosmology.
Literature
  • FEYNMAN, Richard Phillips, Robert B. LEIGHTON and Matthew L. SANDS. Feynmanovy přednášky z fyziky : revidované vydání s řešenými příklady. Translated by Ivan Štoll. 2. vyd. Praha: Fragment, 2013, xii, 732. ISBN 9788025316429. info
  • ČERNÝ, Miroslav, Petr DUB, Jiří KOMRSKA, Michal LENC, Bohumila LENCOVÁ, Miroslav LIŠKA, Jana MUSILOVÁ, Pavla MUSILOVÁ, Jan OBDRŽÁLEK, Jiří PETRÁČEK, Jiří SPOUSTA and Marian ŠTRUNC. Fundamentals of Physics extended (D. Halliday, R. Resnick, J. Walker). Druhé přepracované vydání. Brno, ČR: Vysoké učení technické v Brně - Nakladatelství VUTIUM, 2013, 1333 pp. ISBN 978-80-214-4123-1. info
  • JANČA, Jan. Obecná fyzika. 1. vyd. Praha: Státní pedagogické nakladatelství, 1989, 294 s. info
  • BEISER, Arthur. Úvod do moderní fyziky. Translated by Josef Čada. Vyd. 1. Praha: Academia, 1975, 628 s. URL info
  • ŠPOL'SKIJ, Èduard Vladimirovič. Atomová fysika. 2. vyd. Praha: Státní nakladatelství technické literatury, 1958, 603 s. URL info
  • ŠPOL'SKIJ, Èduard Vladimirovič. Atomová fysika. Translated by Jaroslav Pernegr - Josef Tuček - Jaroslav Pačes. Vyd. 1. Praha: Technicko-vědecké vydavatelství, 1952, 497 s. URL info
Teaching methods
Lecture, seminar.
Assessment methods
Several small written tests in seminars during the semester, final exam has two parts: written test and oral examination.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Information on course enrolment limitations: Není možné získat zároveň kredity za předmět F4050 a některý z předmětů F4050E, F4100 nebo F4100E.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019, Spring 2020, Spring 2021, Spring 2022, Spring 2024, Spring 2025.
  • Enrolment Statistics (Spring 2023, recent)
  • Permalink: https://is.muni.cz/course/sci/spring2023/F4050