Educational program in Data Analytics

MDA102 – Mathematics II

 \bigstar 13th Set of Problems – MDA102

 $^{\odot}$ material of 13TH WEEK

Instructors: Ioannis Chrysikos

 \rightarrow Date sent to students: 16/12/2024

☑ Return date suggestion: 23/12/2024

Exercises

Problem 1. (5 points) Determine the convolution $f_1 * f_2$ of the functions

$$f_1(x) = \begin{cases} 1 - x, & x \in [-2, 1], \\ 0, & \text{otherwise}, \end{cases} \qquad f_2(x) = \begin{cases} 1, & x \in [0, 1], \\ 0, & \text{otherwise}. \end{cases}$$

Hints: See Problems 7.B.1-7.B.3 in the newer version of the BG book.

Problem 2. (5 points) Verify each step in the computation of the Fourier transform $\mathcal{F}(f)$ of the function $f(t) = e^{-at^2}$, with $t \in \mathbb{R}$, where a > 0 is a fixed parameter, presented in Problem 7.B.7 of the BG book. Next, use the desolve command in SageMath to solve the differential equation

$$\frac{dy}{d\omega} = -\frac{\omega}{2a}y\,,$$

appearing within the given solution, where $y(\omega) = \mathcal{F}(f)(\omega)$. Moreover, combine the **assume** function with the **integral** command in Sage to verify that

$$\int_{-\infty}^{\infty} e^{-at^2} dt = \sqrt{\frac{\pi}{a}}.$$

Please present the Sage solutions in a PDF file exported via CoCalc.

Hints: For the Fourier transform see Section 7.2.5 and Problems 7.B.5-7.B.8 in the newer version of the BG book. In the same version, see also Problem 6.B.64 for an implementation of the dsolve command.