Panagiotis Alexiou, PhD  Research Associate  ㅡㅡㅡㅡㅡㅡ  Panagiotis Alexiou  Department of   Pathology and Laboratory Medicine    Division of Neuropathology    613B Stellar Chance Labs  422 Curie Boulevard    Philadelphia, PA 19104-6100    (+1) 267- 277-2661    palexiou@mail.med.upenn.edu    http://www.panalexiou.com/      27 APRIL 2017  CEITEC  Central European Institute of Technology  Brno, Czech Republic    To whom it may concern,    I am writing to apply for the position of ‘Head of Bioinformatics Unit’                          posted recently on the ‘nature-jobs’ website. Allow me to briefly expose                      my skills and experience relevant to the position, following with a brief                        summary of future research directions.    Research Experience    Following my interdisciplinary education in Genetics, Molecular Biology                and Bioinformatics, I acquired my PhD in the field of the bioinformatic                        analysis of microRNA biogenesis and function. The work performed                  during my PhD introduced me to several subfields of bioinformatics, such                      as machine learning for microRNA target prediction (classification), the                  development of relational databases and web-servers, motif analyses,                scientific knowledge text mining - as well as the theoretical fields of Small                          RNA Biology and RNA Binding Protein Biology which would be the                      unifying paths of my research to date.    I continued my research as a Postdoctoral Researcher at the Perelman                      School of Medicine at the University of Pennsylvania, joining the                    Mourelatos Lab, one of the premier laboratories worldwide in small RNA                      biology and RNA binding protein research. During my time at the                      University of Pennsylvania, I have collaborated directly with biomedical                  researchers working extensively with Next Generation Sequencing              (NGS) data. I have developed techniques and algorithms for the analysis                      of NGS data in the fields of piRNA biology (both biogenesis and function),                          microRNA biology, and RNA Binding Proteins function in                neurodegeneration. Specifically pertaining to NGS analysis, I have helped                  develop both an NGS analysis suite (CLIP-Seq-Tools) and a modern perl                      object-oriented framework for NGS analysis (GenOO).    Track record of scientific productivity    During my career I have produced 24 publications, which have                    collectively been cited over 3000 times in the literature ( h-index 17, i-10                          index 18). The online resources I helped produce during my PhD serve                        approximately 500 unique users daily.    My work has lead to a number of discoveries including the function of                          Piwi​ piRNA complexes in germline development, a pre-​miRNA                surveillance system of quality control of miRNA synthesis and the effects                      of TAF15 and FUS on the neuronal transcriptome. Some of these                      publications are in journals of the highest impact in the field such as                          Molecular Cell, Nature Structural & Molecular Biology, Genes &                  Development and Nature, a paper that was highlighted in a commentary                      in Developmental Cell and has been met by overwhelming acceptance by                      the piRNA Biology community.    An overview of my publications can be found in the attached Curriculum                        Vitae.    Communication skills    I pride myself in concise, direct and accurate communication. My career                      to date has always been in radically interdisciplinary environments,                  collaborating day to day with Biochemists, Computer Scientists,                Bioinformaticians, Geneticists, Medical Doctors and so on. I often and                    happily take the role of inter-discipline translator between colleagues                  coming from different backgrounds. I believe my communication (and                  teaching) skills to be some of my strongest points as a scientist.    Organizational and leadership capabilities    During the PhD and Postdoctoral phases of my career I have had some                          opportunities to use my organizational and leadership capabilities. I had                    pivotal roles in setting up and maintaining the hardware of the two labs                          of which I was member. Additionally I organized code development and                      review with coworkers around the agile/xp development model and the                    pair programming approach.     As a teaching assistant and substitute lecturer, I developed and taught an                        elective course on Bioinformatics for last year engineering students and                    MSc students. Due to financial constraints of the university, I was tasked                        with single handedly teaching and overviewing a student lab of 60                      students, including 3 students doing their theses in my field. I managed to                          lead all 3 of these students to produce code fit for inclusion in                          publications from my lab.     Proposed Future Work    My career up to now has been focused on finding ways to efficiently                          implement novel technologies that spearhead innovation in every                subfield of research I have been involved with. I am a proponent of open                            software and scientific resource development, having produced              web-tools that are being used by thousands of users per month,                      open-source tools for the analysis of sequencing data, and even a                      programming package that codifies genomic and NGS entities into                  programming objects, allowing for rapid and robust prototyping of future                    services. My proposed future work involves the development of tools for                      the classification and exploration of NGS data. Specifically, I am                    proposing the development of a machine-learning trained function                classification system for NGS sequencing data of RNA Binding Proteins.                    Please find attached a brief overview of my research plan.    I believe I have the knowledge, expertise, understanding, and will, to                      tackle the issues that will face biomedical research in the following years                        - and I hope that I will be given this opportunity at your Research                            Institute.  Sincerely,    Panagiotis Alexiou, Phd      Panagiotis Alexiou  Research Associate Perelman School of Medicine University of Pennsylvania, USA Contact  Pathology and Laboratory Medicine  Division of Neuropathology  613B Stellar Chance Labs  422 Curie Boulevard  Philadelphia, PA 19104-6100  (+1) 267- 277-2661  palexiou@mail.med.upenn.edu  http://www.panalexiou.com/  Education & Research  University of Aberdeen, ​UK — ​BSc Genetics with Industrial  Placement  1999 - 2004  Universiteit van Amsterdam, ​Netherlands — ​MSc Molecular  Cell Biology and Bioinformatics  2004 - 2006  Aristotelian University of Thessaloniki, ​Greece​ ​— ​PhD  BSRC Alexander Fleming, ​Greece​ ​— ​PhD Research  2007-2011  University of Pennsylvania, ​USA — ​Postdoctoral Research  2011 - 2016  University of Pennsylvania, ​USA — ​Research Associate  2016 - Present    References  Zissimos Mourelatos, MD  Professor of Pathology and Laboratory Medicine  University of Pennsylvania Perelman School of Medicine  Department of Pathology and Laboratory Medicine  Email: ​mourelaz@uphs.upenn.edu  Artemis Hatzigeorgiou, PhD  Professor of Bioinformatics  University of Thessaly, Department of Electrical and Computer  Engineering  Email: ​arhatzig@inf.uth.gr  Theodore Dalamagas, PhD  Senior Researcher  ATHENA Research Center  Email: ​dalamag@imis.athena-innovation.gr      Research Focus & Skills  RNA-binding protein biology  NGS sequencing data analysis  Programming (perl, golang)  Statistics (R)  Bioinformatics Algorithms    Grants & Scholarships  2007-2010  BSRC Alexander Fleming PhD  funding scholarship  2010-2012   IKYDA personnel exchange  program grant  (Greece-Germany) in  collaboration with Martin  Luther University  Halle-Wittenberg    Teaching  2010-2011   Graduate Teaching Assistant  University of Thessaly,  Department of Electrical and  Computer Engineering  Bioinformatics (HY501)  2010-2011   Substitute Lectures National and Kapodistrian  University of Athens, Department of Informatics  and Communications,   MSc Information  Technologies in Medicine and  Biology    Publications  Citations  3008  h-index  17  i10-index  18    List in chronological order (* denotes equal contribution):    1. Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N, Liu CG, Giannakakis A, ​Alexiou ​P​, Hasegawa K,                                        Johnstone CN, Megraw MS, Adams S, Lassus H, Huang J, Kaur S, Liang S, Sethupathy P, Leminen A, Simossis VA,                                        Sandaltzopoulos R, Naomoto Y, Katsaros D, Gimotty PA, DeMichele A, Huang Q, Bützow R, Rustgi AK, Weber BL,                                    Birrer MJ, Hatzigeorgiou AG, Croce CM, Coukos G (2008) Genomic and Epigenetic Alterations Deregulate                            microRNA Expression in Human Epithelial Ovarian Cancer,​ Proc Natl Acad Sci U S A​ ,105(19) ,7004-9.​ (cited: 500)  2. Maragkakis M, Reczko M, Simossis VA, ​Alexiou ​P​, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G,                                Koukis E, Kourtis K, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG. (2009) DIANA-microT web                                  server: elucidating microRNA functions through target prediction., ​Nucleic Acids Res.​ ,37​ ​W273-6. ​ (cited: 462)  3. Papadopoulos GL, ​Alexiou ​P​, Maragkakis M, Reczko M, Hatzigeorgiou AG. (2009) DIANA-mirPath: Integrating                          human and mouse microRNAs in pathways., ​Bioinformatics​. ,2009 Aug 1;25(15):1991-3.​ ​(cited: 252)  4. Maragkakis M*, ​Alexiou ​P*​, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, Goumas G, Koukis E,                                Kourtis K, Simossis VA, Sethupathy P, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG. (2009)                                  Accurate microRNA target prediction correlates with protein repression levels. ​BMC Bioinformatics ,2009 Sep                          18;10:295. ​ ​(cited: 318)  5. Alexiou P​, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG (2009) Lost in translation: an                              assessment and perspective for computational microRNA target identification., ​Bioinformatics , 25(23):3049-55.                      (cited: 285)  6. Alexiou P​, T. Vergoulis, M. Gleditzsch, G. Prekas, T. Dalamagas, M. Megraw, I. Grosse, T. Sellis, A.G. Hatzigeorgiou                                    (2009) miRGen 2.0: a database of microRNA genomic information and regulation, ​Nucleic Acids Research                            ,Nucleic Acids Res. 2010 January; 38(Database issue): D137–D141.​ ​(cited: 138)   7. Alexiou P​, Maragkakis M, Papadopoulos GL, Simmosis VA, Zhang L, Hatzigeorgiou AG (2010) The                            DIANA-mirExTra web server: from gene expression data to microRNA function., ​PLoS ONE​ ,5(2):e9171.​ ​(cited: 69)  8. Marotta D, Karar J, Jenkins WT, Kumanova M, Jenkins KW, Tobias JW, Baldwin D, Hatzigeorgiou A, Alexiou P​,                                    Evans SM, Alarcon R, Maity A, Koch C, Koumenis C. (2011) In vivo profiling of hypoxic gene expression in gliomas                                        using the hypoxia marker EF5 and laser-capture microdissection.​ Cancer Res​ ,71(3):779-89.​ ​(cited: 33)   9. Alexiou P, Maragkakis M, Hatzigeorgiou AG (2011) Online resources for microRNA analysis. ​Journal of Nucleic                              Acid Investigation​, 2(1).​ ​(cited: 7)   10. Maragkakis M, Vergoulis T, ​Alexiou P​, Reczko M, Plomaritou K, Gousis M, Kourtis K, Koziris N, Dalamagas T,                                    Hatzigeorgiou AG. (2011) DIANA-microT Web server upgrade supports Fly and Worm miRNA target prediction and                              bibliographic miRNA to disease association. ​Nucleic Acids Res.​ ​W145-8. ​(cited: 80)   11. Vergoulis T, Vlachos IS, ​Alexiou P​, Georgakilas G, Maragkakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas                                  T, Hatzigeorgiou AG. (2011) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental                              support.​ Nucleic Acids Res.​ 2011 Dec 1.  ​(cited: 401)  12. Reczko M, Maragkakis M, ​Alexiou P​, Grosse I, Hatzigeorgiou AG (2012) Functional microRNA targets in protein                                coding sequences ​Bioinformatics​ 28 (6), 771-776 ​(cited: 188)  13. Reczko M, Maragkakis M, ​Alexiou P​, Papadopoulos GL, Hatzigeorgiou AG. (2012) Accurate microRNA target                            prediction using detailed binding site accessibility and machine learning on proteomics data. ​Frontiers in                            Bioinformatics and Computational Biology​.  ​(cited: 19)   14. Vourekas A, Zheng Q, ​Alexiou P​, Maragkakis M, Kirino Y, Gregory BD, Mourelatos Z. (2012) Mili and Miwi target                                      RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. ​Nat Struct Mol Biol.                              19(8):773-81. ​(cited: 103)  15. Honda S, Kirino Y, Maragkakis M, ​Alexiou P​, Ohtaki A, Murali R, Mourelatos Z, Kirino Y. (2013) Mitochondrial                                    protein BmPAPI modulates the length of mature piRNAs. ​RNA​. 2013 Oct;19(10):1405-18​(cited: 26)  16. Ibrahim F, Maragkakis M*, ​Alexiou P*​, Maronski MA, Dichter MA, Mourelatos Z. (2013) Identification of in vivo,                                  conserved, TAF15 RNA binding sites reveals the impact of TAF15 on the neuronal transcriptome. ​Cell Rep.                                3(2):301-8. ​(cited: 13)  17. Nakaya T, ​Alexiou P*​, Maragkakis M*, Chang A, Mourelatos Z. (2013) FUS regulates genes coding for                                RNA-binding proteins in neurons by binding to their highly conserved introns. ​RNA​ 19(4):498-509. ​(cited: 49)  18. Liu X, Zheng Q, Vrettos N, Maragkakis M, ​Alexiou P​, Gregory BD, Mourelatos Z. (2014) A MicroRNA precursor                                    surveillance system in quality control of MicroRNA synthesis. ​Mol Cell.​ 55(6):868-79. ​(cited: 29)  19. Vourekas A, Zheng K, Fu Q, Maragkakis M, ​Alexiou P​, Ma J, Pillai RS, Mourelatos Z, Wang PJ. (2015) The RNA                                          helicase MOV10L1 binds piRNA precursors to initiate piRNA processing. ​Genes Dev.​ 29(6):617-29. ​(cited: 22)  20. Maragkakis M*, ​Alexiou P*​, Mourelatos M. (2015) GenOO: A Modern Perl Framework for High Throughput                              Sequencing analysis. ​bioRxiv​ doi:http://dx.doi.org/10.1101/019265​. ​(cited: 1)  21. Maragkakis M*, ​Alexiou P*​, Nakaya T, Mourelatos M. (2016) CLIPSeqTools—a novel bioinformatics CLIP-seq                          analysis suite. ​RNA​. 22(1):1-9. ​(cited: 5)  22. Vourekas A*, ​Alexiou P*​, Vrettos N, Maragkakis M, Mourelatos Z. (2016) Sequence-dependent but not                            sequence-specific piRNA adhesion traps and anchors mRNAs to the germ plasm. ​Nature 531(7594):390-4. ​(cited:                            8)   this publication was highlighted in: Voronina E (2016) mRNAs Hit a Sticky Wicket. Dev Cell;37(1):9-10  23. Vrettos N, Maragkakis M, ​Alexiou P​, Mourelatos Z. (2017) Kc167, a widely used Drosophila cell line, contains an                                    active primary piRNA pathway. ​RNA​ 23 (1), 108-118   24. Alexiou P*​, Maragkakis M, Mourelatos Z, Vourekas A* (2017). cCLIP-Seq: Retrieval of chimaeric reads from                              HITS-CLIP (CLIP-Seq) libraries. ​Methods in Molecular Biology​ (in press)  Next Generation Sequencing based classification and exploration of                RNA Binding Protein function.        Background    The completion of the Human Genome Project has ushered in a new era of genetic and medical research                                    by defining the human genome in its entirety. The contribution of perhaps even greater importance is                                the accompanying technological developments in high throughput sequencing that now allow                      researchers to sequence human genomes in a few days for as little as 1,000 €. High throughput Next                                    Generation Sequencing (NGS) technologies are continuously lowering the cost of biological molecules                        sequencing through parallelization, making NGS a widely used tool for genomic analysis and creating an                              amazing trove of sequencing data openly available to researchers. (NGS reviewed in ​(van Dijk et al.                                2014)​)    RNA Binding Proteins (RBPs) take part in many physiological cellular functions (splicing, regulation of                            translation, mRNA decay, transposon suppression etc) and their misregulation has been implicated with                          several diseases (neurodegenerative diseases, cancer etc). A number of NGS techniques are being used                            to identify the binding sites of RBPs, HITS-CLIP (high-throughput sequencing of RNA that is isolated                              after ultraviolet (UV) irradiation-induced crosslinking and immunoprecipitation) ​(Chi et al. 2009; Moore                        et al. 2014) individual-nucleotide resolution iCLIP ​(König et al. 2010) photoactivatable                      ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) ​(Hafner et al. 2010) and so                      on., have been used to identify RBP binding sites on RNA molecules, as well as the small RNA load and                                        targets of RBPs that utilize small RNA ‘driver’ sequences. Currently, there are hundreds such                            experiments performed and publicly deposited per year; this rate bound to accelerated increase in the                              foreseeable future due to reducing costs and ubiquitousness of sequencing machines.    Machine learning systems are currently used to recognize patterns in biomedical images, predict protein                            structures, classify RNAs as potential targets of RBPs, and many other applications. Recent                          developments in Machine Learning, such as Deep Learning (reviewed in ​(LeCun et al. 2015)​), are                              creating new opportunities to harness big data and identify patterns from disparate sources.                          Conventional machine learning techniques are limited by the need of the development of domain                            specific features, a process that can introduce bias, is time consuming, and requires extended knowledge                              of the training sets. Deep learning type techniques instead use several layers of automatically created                              representation to learn features from raw data in a time efficient manner.    My proposed research focus is the use of Machine Learning techniques to interrogate a large number of                                  available NGS RBP datasets in order to classify, and eventually predict, RBP function and interplay.                              Conceptually this proposal can be broken down in three aims:    1. Standardization of NGS analyses for RBPs  2. Classification of RBPs  3. Prediction and Exploration of RBP function                Aim 1: Standardization of NGS analysis for RBPs.    The first focus of my research will be to build a series of modular standardized tools for NGS analysis of                                        RBPs. The first steps towards this direction have already been done with the development of                              ClipSeqTools ​(Maragkakis et al. 2016) - a suite for the analysis of NGS reads. Additional modules                                pertaining to secondary structure, target sequence motifs, and relative positioning between samples are                          already under way for the next installment of the tool. I am currently working towards a framework that                                    deals with RBPs that use small RNAs as drivers (such as piRNAs or miRNAs). User friendly and                                  standardized analyses by themselves are useful for the growing community, but are also the base on                                which further aims will be built on.    Previously, I have been heavily involved with the development of coding tools used for NGS data                                analysis (GenOO ​(Maragkakis et al. 2015)​, ClipSeqTools ​(Maragkakis et al. 2016)​), which were in turn                              applied on several different types of RBPs, helping elucidate the biological functions of said RBPs.                              Specifically, I was heavily involved in the identification of piRNA biogenesis and function in mouse testis,                                based on CLIP-Seq and RNA-Seq analysis of the mouse MIWI and MILI RBPs ​(Vourekas et al. 2012)​. The                                    identification of the role of a mitochondrial RBP (BmPAPI) in the biogenesis and maturation of piRNAs                                using NGS ​(Honda et al. 2013)​.The identification of a mechanism that performs ‘quality control’ on                              microRNA precursors, identified via a novel method for circularization and NGS of small RNA                            precursors ​(Liu et al. 2014)​. The identification of the roles of the RBP MOV10L1 in the processing of                                    piRNA precursors in which the use of CLIP-Seq data allowed us to create a model that explained the                                    determination of initiation of piRNA processing ​(Liu et al. 2014; Vourekas et al. 2015)​. My latest large                                  published project, identified the mechanism by which an RBP (Aubergine) specifies germ cells in fly                              embryos using small RNAs (piRNAs) as non-specific drivers ​(Vourekas et al. 2016)​. This project by itself                                involved various analyses such as small RNA targeting prediction using chimeric reads, coverage of                            mRNAs and piRNA precursors by CLIP reads, enrichment of targeting in localization categories and a                              total of over 30 NGS samples. I have also worked on two RBPs of the FET family (TAF15 and FUS)                                        associated with ALS (Amyotrophic Lateral Sclerosis or Lou Gehrig's disease) using NGS techniques                          (mainly CLIP-Seq and RNA-Seq). For TAF15 ​(Ibrahim et al. 2013) we identified conserved binding sites                              that affected neuronal transcription. For FUS ​(Nakaya et al. 2013) we identified conserved intron                            regions, bound by FUS in patients, that affect splicing of target genes. Both of these projects involved                                  analyses including motif finding, conservation analysis, functional analysis, localization on mRNAs,                      intron/exon localization.           Aim 2: Classification of RBPs.    Using the hundreds of available datasets we will classify proteins based on their binding profiles. The                                aim of this endeavour will be the development of sets of features that will classify experiments in groups                                    of close similarity based on their binding profiles and the identity of their target genes. Essentially, RBPs                                  that bind in similar ways, and bind similar genes will be clustered together based on the sets of features                                      that are deemed most important by the Machine Learning classifier.    Previously, I have been involved in the development of Machine Learning classifiers for the prediction of                                miRNA target sites with high precision ​(Manolis Maragkakis et al. 2009; Reczko et al. 2012; Reczko et                                  al. 2011)​. I am currently developing a Machine Learning classifier based on chimeric reads ​(Vourekas et                                al. 2016)​ for the classification of piRNA binding sites across several species.         Aim 3: Prediction and Exploration of RBP function.    Finally, the products of Aim 1 and 2 will allow the development of a tool that allows researchers to                                      predict functional characteristics of their RBP based on an NGS experiment. Briefly, a standardized                            pipeline (Aim 1) will be used to extract features (defined by Aim 2). Features will then be used to                                      compare and contrast the RBP of choice against the background of all RBPs used for training (Aim 2).                                    The new RBP will be classified, and significant differences against the background will be reported to the                                  user.    Previously, I have been involved in the development of highly used Web servers (~ 2000 unique                                users/week currently) that allow users to explore miRNA related data such as experimentally verified                            targets ​(Vergoulis et al. 2011)​, predicted targets ​(M. Maragkakis et al. 2009; Maragkakis et al. 2011)​,                                miRNA transcripts and their regulatory regions ​(Alexiou, Vergoulis, et al. 2010) and so on ​(Alexiou,                              Maragkakis, et al. 2010; Papadopoulos et al. 2009)​.        Conclusion    The pace of technological innovation is ever accelerating in our field, opening new horizons and                              opportunities. The harnessing of big data using machine learning, as applied on the field of RNA biology,                                  is a promising field that will create novel biological knowledge, as well as infrastructure - accelerating                                the research process for future experiments.          References  1. Alexiou, P., Vergoulis, T., et al., 2010. miRGen 2.0: a database of microRNA genomic information and  regulation. ​Nucleic acids research​, 38(Database issue), pp.D137–41.  2. Alexiou, P., Maragkakis, M., et al., 2010. The DIANA-mirExTra web server: from gene expression data to  microRNA function. ​PloS one​, 5(2), p.e9171.  3. Chi, S.W. et al., 2009. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. ​Nature​,  460(7254), pp.479–486.  4. van Dijk, E.L. et al., 2014. Ten years of next-generation sequencing technology. ​Trends in genetics: TIG​,  30(9), pp.418–426.  5. Hafner, M. et al., 2010. Transcriptome-wide identification of RNA-binding protein and microRNA target  sites by PAR-CLIP. ​Cell​, 141(1), pp.129–141.  6. Honda, S. et al., 2013. Mitochondrial protein BmPAPI modulates the length of mature piRNAs. ​RNA ​,  19(10), pp.1405–1418.  7. Ibrahim, F. et al., 2013. Identification of in vivo, conserved, TAF15 RNA binding sites reveals the impact of  TAF15 on the neuronal transcriptome. ​Cell reports​, 3(2), pp.301–308.  8. König, J. et al., 2010. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide  resolution. ​Nature structural & molecular biology​, 17(7), pp.909–915.  9. LeCun, Y., Bengio, Y. & Hinton, G., 2015. Deep learning. ​Nature​, 521(7553), pp.436–444.  10. Liu, X. et al., 2014. A MicroRNA precursor surveillance system in quality control of MicroRNA synthesis.  Molecular cell​, 55(6), pp.868–879.  11. Maragkakis, M. et al., 2009. Accurate microRNA target prediction correlates with protein repression  levels. ​BMC bioinformatics​, 10, p.295.  12. Maragkakis, M. et al., 2016. CLIPSeqTools--a novel bioinformatics CLIP-seq analysis suite. ​RNA ​, 22(1),  pp.1–9.  13. Maragkakis, M. et al., 2009. DIANA-microT web server: elucidating microRNA functions through target  prediction. ​Nucleic acids research​, 37(Web Server issue), pp.W273–6.  14. Maragkakis, M. et al., 2011. DIANA-microT Web server upgrade supports Fly and Worm miRNA target  prediction and bibliographic miRNA to disease association. ​Nucleic acids research​, 39(Web Server issue),  pp.W145–8.  15. Maragkakis, M. et al., 2015. ​GenOO: A Modern Perl Framework for High Throughput Sequencing analysis​,  Available at: ​http://dx.doi.org/10.1101/019265​.  16. Moore, M.J. et al., 2014. Mapping Argonaute and conventional RNA-binding protein interactions with RNA  at single-nucleotide resolution using HITS-CLIP and CIMS analysis. ​Nature protocols​, 9(2), pp.263–293.  17. Nakaya, T. et al., 2013. FUS regulates genes coding for RNA-binding proteins in neurons by binding to their  highly conserved introns. ​RNA ​, 19(4), pp.498–509.  18. Papadopoulos, G.L. et al., 2009. DIANA-mirPath: Integrating human and mouse microRNAs in pathways.  Bioinformatics ​, 25(15), pp.1991–1993.  19. Reczko, M. et al., 2011. Accurate microRNA Target Prediction Using Detailed Binding Site Accessibility  and Machine Learning on Proteomics Data. ​Frontiers in genetics​, 2, p.103.  20. Reczko, M. et al., 2012. Functional microRNA targets in protein coding sequences. ​Bioinformatics ​, 28(6),  pp.771–776.  21. Vergoulis, T. et al., 2011. TarBase 6.0: capturing the exponential growth of miRNA targets with  experimental support. ​Nucleic acids research​, p.gkr1161.  22. Vourekas, A. et al., 2012. Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of  Miwi in spermiogenesis. ​Nature structural & molecular biology​, 19(8), pp.773–781.  23. Vourekas, A. et al., 2016. Sequence-dependent but not sequence-specific piRNA adhesion traps mRNAs to  the germ plasm. ​Nature​, 531(7594), pp.390–394.  24. Vourekas, A. et al., 2015. The RNA helicase MOV10L1 binds piRNA precursors to initiate piRNA  processing. ​Genes & development​, 29(6), pp.617–629.