An agent-based model of price flexing by chain-store retailers Ondřej Krčál, FEA MU, MUES 2012, 15/11/2012

Price flexing

Price flexing by chain-store retailers = third-degree price discrimination in which individual stores set their prices according to their local market power.

Examples:

- UK supermarket sector Competition Commission (2000) found this practice anti-competitive but offered no remedy
- Czech petrol stations Shell has zero profit margin in some regions and a PM of 4 CZK in other locations (highways)
 Office for the Protection of Competition did not find this practice anti-competitive

Literature review

Dobson & Waterson (2005a, 2005b, 2008)

- stylized models of a supermarket sector with two separate markets, one monopolistic and one competitive and two retailers
- choice of both local and uniform pricing might be rational for some parameters of the model
- also the welfare consequences of different combinations of pricing strategies depend on parameter values.

Problem of their approach: pricing has no effect on market structure.

I propose an agent-based model where pricing strategy affects not only prices but also number and location of stores in the market.

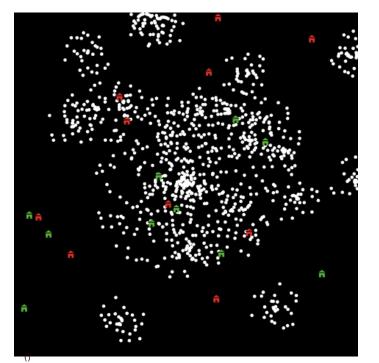
Model (1/5)

Agent-based model implemented in Netlogo 4.1.3.

In each run, the model is initialized + it runs for some periods.

Initialization:

- **landscape** a square of 40×40 patches
- **1,000 consumers** who differ only in their locations. Each gets a location with random direction and distance from the center of a settlement. The distance ranges from 0 to $\sqrt{h/(\pi u)}$, where *h* is the number of inhabitants and *u* population-density parameter.
- 2 chain-stores chain 1 and 2 opens 10 stores of each with a random location and a price $p_R/2$, where p_R is reservation price of consumers.



Model (2/5)

Each periods has four phases: 1) opening stores, 2) adjusting prices, 3) shopping, and 4) closing stores.

1) Opening stores - up to v stores for each chain

A new store opens only if it increases the profit of the chain – depends on the price the new store charges:

- U the same price as any store in its chain
- \underline{L} the lowest price charged by an incumbent store of its chain
- \hat{L} the average price charged by the stores of its chain
- L_L the price of the store (of any chain) with the lowest distance

Model (3/5)

2) Adjusting prices – each store changes its price by $\epsilon > 0$ or by 0.

The adjustment decision depends on pricing strategy:

- uniform pricing (U) each chain chooses the price that maximizes its profit given the price charged by the other chain.
- local pricing $(\underline{L}, \hat{L}, \text{ or } L_L)$ each *store* chooses the price that maximizes its chain's profit given the prices charged by all the other stores.

Model (4/5)

3) Shopping - each consumer chooses the store with the lowest

 $p_{it} + cd_{it}^2$

where

- *p_{it}* is the price of the product,
- c > 0 is the per-patch transportation cost,
- *d_{it}* is the distance to the store *i*.

In this store, each consumer buys

- 1 unit of the product if her reservation price p_R is higher than price + transportation cost,
- 0 units otherwise.

Model (5/5)

4) Closing store - depends on profits of stores.

Assuming zero marginal cost, the profit of store i in period t is

$$\pi_{it} = q_{it}p_{it} - F,$$

where

- q_{it} are units of product sold,
- *F* is the quasi-fixed cost.

In period t, the chain closes store i with a probability

$$\frac{-\pi_{it}}{F}$$

Data (1/2)

Generated in Behavior Space in Netlogo for all combinations of the following parameters/settings (1,024 runs):

- urban landscape (1 city of h = 400 and 20 villages of h = 30) and rural landscape (30 villages of h = 30)
- population-density parameters u = 0.5 and 1
- reservation prices $p_R = 0.5$ and 1
- numbers of new stores v = 2 and 4
- strategy profiles (U, U), $(\underline{L}, \underline{L})$, (\hat{L}, \hat{L}) and (L_L, L_L)
- transportation-cost parameters c = 0.01 and 0.02
- price-change parameters $\epsilon = 0.02$ and 0.03
- quasi-fixed cost F = 5
- random seeds 1, 2, 3, and 4

Data (2/2)

Each run of the simulation generates the following variables:

• Quantity $Q = \frac{1}{100} \sum_{t=101}^{200} \bar{n}_t$, where \bar{n}_t is the number of consumers who bought 1 unit of product (customer)

• Price
$$P = rac{1}{100} \sum_{t=101}^{200} (rac{1}{ar{n}_t} \sum_{j=1}^{ar{n}_t} p_{jt})$$

- Number of stores of chain $k M_k = \frac{1}{100} \sum_{t=101}^{200} m_{kt}$
- Revenue of chain $k \ R_k = \frac{1}{100} \sum_{t=101}^{200} \sum_{l=1}^{m_{kt}} q_{lkt} p_{lkt}$
- Distance $D = rac{1}{100} \sum_{t=101}^{200} \sum_{j=1}^{ar{n}_t} d_{jt}^*$
- Consumers' surplus $CS = Qp_R R cD^2$ where $R = R_1 + R_2$
- Profit of chain $k \prod_k = R_k M_k F$
- Total profit $\Pi = \Pi_1 + \Pi_2 = R MF$, where $M = M_1 + M_2$
- Welfare $W = CS + \Pi = Qp_R cD^2 MF$

Results (1/4)

Compare outcomes of 3 three pairs of strategies:

- (*U*, *U*) to (*L*, *L*)
- (U, U) to (L_L, L_L) .

I run a regressions for each pair of strategies and each variable of the entire dataset (24 regressions in total) - example:

$$STORES_NO = 19.307 + 507.176 TRANSP_COST$$

$$-3.454 POP_DENSITY + 5.935 RES_PRICE + 19.293 EPSILON$$

$$+0.325 ENTRANTS - 1.336 URBAN - 4.523 LOCAL$$

$$(0.118) \bar{R}^2 = 0.677 F(7, 504) = 153.64 \hat{\sigma} = 2.676$$

(standard errors in parentheses)

Results (2/4)

I run the 24 regressions also for each of the 12 partition of the data defined by one value of the following parameters:

- TRANSP_COST c = 0.01 or 0.02
- POP_DENSITY u = 0.5 or 1
- RES_PRICE $p_R = 0.5$ or 1
- EPSILON $\epsilon = 0.02$ or 0.03
- ENTRANTS v = 2 or 4
- URBAN = 0 or 1

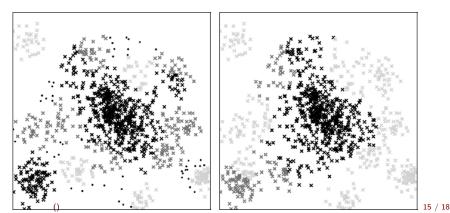
The total number of regressions is therefore 312. The following table presents the parameters and standard errors of LOCAL for the entire dataset and for the partitions restricted to $p_R = 0.5$ and 1.

Dataset	Pricing	Q	М	cD^2	W	Р	R	CS	П
all data (<i>T</i> = 512)	(U, U)	965.4	29.6	64.7	519.9	0.285	275.2	392.5	127.4
	(<u>L</u> , <u>L</u>)	-27.8	-4.52	35.3	-29.1	-0.004	-10.1	-41.6	12.5
		(2.94)	(0.24)	(1.23)	(1.38)	(0.003)	(3.10)	(3.21)	(2.47)
	(\hat{L}, \hat{L})	-9.23	-1.59	20.2	-17.6	-0.013	-15.1	-10.6	-7.09
		(2.63)	(0.24)	(0.84)	(1.26)	(0.003)	(2.92)	(2.78)	(2.11)
	(L_L, L_L)	-10.8	-1.39	14.09	-13.2	0.002	-0.57	-19.6	6.38
		(2.69)	(0.24)	(0.76)	(1.21)	(0.003)	(3.12)	(2.89)	(2.24)
$p_{\rm R} = 0.5$ (<i>T</i> = 256)	(U, U)	932.0	28.1	56.7	269.0	0.262	243.6	165.8	103.2
	(<u>L</u> , <u>L</u>)	-45.6	-4.55	17.8	-17.8	-0.028	-37.0	-3.51	-14.3
		(3.27)	(0.29)	(0.71)	(1.64)	(0.003)	(2.46)	(2.32)	(1.63)
	(\hat{L}, \hat{L})	-15.5	-2.12	12.2	-9.33	-0.023	-25.6	5.71	-15.1
		(2.77)	(0.26)	(0.57)	(1.63)	(0.003)	(2.36)	(2.38)	(1.67)
	(L_L, L_L)	-18.6	-2.26	7.63	-5.63	-0.013	-17.3	0.34	-5.98
		(2.79)	(0.27)	(0.57)	(1.58)	(0.003)	(2.54)	(2.53)	(1.69)
$p_{R} = 1$ (<i>T</i> = 256)	(U, U)	998.8	31.0	72.8	770.8	0.307	306.7	619.3	151.5
	(<u>L</u> , <u>L</u>)	-9.99	-4.49	52.9	-40.4	0.02	16.8	-79.7	39.3
		(0.71)	(0.32)	(1.31)	(1.99)	(0.004)	(3.81)	(4.05)	(2.98)
	(\hat{L}, \hat{L})	-3.01	-1.07	28.3	-26.0	-0.003	-4.47	-26.8	0.86
		(0.33)	(0.33)	(0.88)	(1.79)	(0.004)	(4.06)	(4.06)	(2.91)
	(L_L, L_L)	-2.88	-0.51	20.5	-20.8	0.017	16.2	-39.6	18.7
		(0.31)	(0.34)	(0.81)	(1.72)	(0.004)	(4.28)	(4.19)	(3.07)

Results (3/4)

Prices for the strategy (L_L, L_L) for $p_R = 0.5$ (left) and $p_R = 1$:

- black crosses = customers with $p_{it} \leq 0.2$
- dark gray crosses = customers with $0.2 < p_{jt} \le 0.3$
- light gray crosses = customers with $p_{jt} > 0.3$
- dots = consumers with 0 units of product



Results (4/4)

Change in welfare is

$$\Delta W = \Delta Q p_R - c \Delta D^2 - \Delta M F,$$

where

- $\Delta Q p_R$ = welfare effect of quantity traded,
- $-c\Delta D^2$ = welfare effect of distance to shops,
- $-\Delta MF$ = effect of lower number of shops.

reservation price	pricing strategy	ΔW	$\Delta Q p_R$	$-c\Delta D^2$	$-\Delta MF$
	$(\underline{L},\underline{L})$	-17.8	-22.8	-17.8	22.8
$p_{R} = 0.5$	(\hat{L},\hat{L})	-9.3	-7.7	-12.2	10.6
	(L_L, L_L)	-5.6	-9.3	-7.6	11.3
$p_R = 1$	(<u>L</u> , <u>L</u>)	-40.4	-10	-52.9	22.5
	(\hat{L},\hat{L})	-26.0	-3.0	-28.3	5.3
	(L_L, L_L)	-20.8	-2.9	-20.5	2.6

What is the effect of local pricing on market outcomes?

The agent-based model with endogenous entry and location of stores shows that local pricing

- reduces welfare because the effect of quantity traded and distance to shops outweighs the effect of lower number of shops.
- may increase or reduce total profits and consumers' surplus, depending on the size of the reservation price relative to the equilibrium price.

Literature

- Dobson, P. W., and Waterson, M.: Chain-Store Pricing across Local Markets. *Journal of Economics & Management Strategy*, 14 (2005a), 93–119.
- Dobson, P. W., and Waterson, M.: Price Flexing and Chain-Store Competition. *Proceedings of the 32nd EARIE Annual Conference*, (2005b) available at http://www.fep.up.pt/conferences/earie2005/cd_rom/ Session%20VI/VI.J/Dobson.pdf
- Dobson, P. W., and Waterson, M.: Chain-Store Competition: Customized vs. Uniform Pricing. (2008) available at http://wrap.warwick.ac.uk/1375/1/WRAP_Dobson_twerp_840.pdf
- http://byznys.ihned.cz/c1-56929340-shell-nizkymi-cenami-v-nekterych-regionech-porusuje-zakon-stezuji-si-pumpari
- http://ekonomika.idnes.cz/pumpari-neuspeli-se-stiznosti-na-shelld97-/eko-doprava.aspx?c=A120906_105308_eko-doprava_fih

⁽⁾