Does Financing of Public Goods by Lotteries Crowd Out Pro-Social Incentives?

Peter Katuščák¹ Tomáš Miklánek¹

¹CERGE-EI PRAGUE

Masaryk University December 12, 2013

 Provision of public goods by voluntary private contributions (VCM): free-rider problem

- Provision of public goods by voluntary private contributions (VCM): free-rider problem
- One possible solution: fixed-prize lottery
 - Morgan (2000)
 - Morgan and Sefton (2000)

- Provision of public goods by voluntary private contributions (VCM): free-rider problem
- One possible solution: fixed-prize lottery
 - Morgan (2000)
 - Morgan and Sefton (2000)
- Design:

- Provision of public goods by voluntary private contributions (VCM): free-rider problem
- One possible solution: fixed-prize lottery
 - Morgan (2000)
 - Morgan and Sefton (2000)
- Design:
 - each EUR of contribution buys one lottery ticket

- Provision of public goods by voluntary private contributions (VCM): free-rider problem
- One possible solution: fixed-prize lottery
 - Morgan (2000)
 - Morgan and Sefton (2000)
- Design:
 - each EUR of contribution buys one lottery ticket
 - one lottery ticket is drawn at random and wins a fixed prize

- Provision of public goods by voluntary private contributions (VCM): free-rider problem
- One possible solution: fixed-prize lottery
 - Morgan (2000)
 - Morgan and Sefton (2000)
- Design:
 - each EUR of contribution buys one lottery ticket
 - one lottery ticket is drawn at random and wins a fixed prize
 - the prize is financed out of the pool of contributions

- Provision of public goods by voluntary private contributions (VCM): free-rider problem
- One possible solution: fixed-prize lottery
 - Morgan (2000)
 - Morgan and Sefton (2000)
- Design:
 - each EUR of contribution buys one lottery ticket
 - one lottery ticket is drawn at random and wins a fixed prize
 - the prize is financed out of the pool of contributions
- Idea:

- Provision of public goods by voluntary private contributions (VCM): free-rider problem
- One possible solution: fixed-prize lottery
 - Morgan (2000)
 - Morgan and Sefton (2000)
- Design:
 - each EUR of contribution buys one lottery ticket
 - one lottery ticket is drawn at random and wins a fixed prize
 - the prize is financed out of the pool of contributions
- Idea:
 - provide a monetary incentive to contribute

MECHANICS OF THE EFFECT

• Offsets the positive externality of contributing with a negative externality of diluting the others' probability of winning

Mechanics of the Effect

- Offsets the positive externality of contributing with a negative externality of diluting the others' probability of winning
- Increases social efficiency of the Nash equilibrium allocation

Mechanics of the Effect

- Offsets the positive externality of contributing with a negative externality of diluting the others' probability of winning
- Increases social efficiency of the Nash equilibrium allocation
- The negative externality is present if an extra 1 EUR lottery ticket reduces the expected winnings for the other participants

MECHANICS OF THE EFFECT

- Offsets the positive externality of contributing with a negative externality of diluting the others' probability of winning
- Increases social efficiency of the Nash equilibrium allocation
- The negative externality is present if an extra 1 EUR lottery ticket reduces the expected winnings for the other participants
 - works in fixed-prize lotteries

Mechanics of the Effect

- Offsets the positive externality of contributing with a negative externality of diluting the others' probability of winning
- Increases social efficiency of the Nash equilibrium allocation
- The negative externality is present if an extra 1 EUR lottery ticket reduces the expected winnings for the other participants
 - works in fixed-prize lotteries
 - does not work in parimutuel betting

- People in the field and experimental subjects in the lab often contribute even under VCM:
 - Ledyard (1995); Chen (2008); Chaudhuri (2011)

- People in the field and experimental subjects in the lab often contribute even under VCM:
 - Ledyard (1995); Chen (2008); Chaudhuri (2011)
- Not consistent with purely self-regarding preferences

- People in the field and experimental subjects in the lab often contribute even under VCM:
 - Ledyard (1995); Chen (2008); Chaudhuri (2011)
- Not consistent with purely self-regarding preferences
- Can be explained by social preferences

- People in the field and experimental subjects in the lab often contribute even under VCM:
 - Ledyard (1995); Chen (2008); Chaudhuri (2011)
- Not consistent with purely self-regarding preferences
- Can be explained by social preferences
- Concentrate on VCM in the *linear* public good game

- People in the field and experimental subjects in the lab often contribute even under VCM:
 - Ledyard (1995); Chen (2008); Chaudhuri (2011)
- Not consistent with purely self-regarding preferences
- Can be explained by social preferences
- Concentrate on VCM in the *linear* public good game
- Without beliefs assumptions:

- People in the field and experimental subjects in the lab often contribute even under VCM:
 - Ledyard (1995); Chen (2008); Chaudhuri (2011)
- Not consistent with purely self-regarding preferences
- Can be explained by social preferences
- Concentrate on VCM in the *linear* public good game
- Without beliefs assumptions:
 - maximization of social welfare (Laffont 1975)

- People in the field and experimental subjects in the lab often contribute even under VCM:
 - Ledyard (1995); Chen (2008); Chaudhuri (2011)
- Not consistent with purely self-regarding preferences
- Can be explained by social preferences
- Concentrate on VCM in the *linear* public good game
- Without beliefs assumptions:
 - maximization of social welfare (Laffont 1975)
 - altruism (Becker 1974; Andreoni 1989, 1990)

- People in the field and experimental subjects in the lab often contribute even under VCM:
 - Ledyard (1995); Chen (2008); Chaudhuri (2011)
- Not consistent with purely self-regarding preferences
- Can be explained by social preferences
- Concentrate on VCM in the *linear* public good game
- Without beliefs assumptions:
 - maximization of social welfare (Laffont 1975)
 - altruism (Becker 1974; Andreoni 1989, 1990)
 - prediction: maximum contribution

- People in the field and experimental subjects in the lab often contribute even under VCM:
 - Ledyard (1995); Chen (2008); Chaudhuri (2011)
- Not consistent with purely self-regarding preferences
- Can be explained by social preferences
- Concentrate on VCM in the *linear* public good game
- Without beliefs assumptions:
 - maximization of social welfare (Laffont 1975)
 - altruism (Becker 1974; Andreoni 1989, 1990)
 - prediction: maximum contribution
 - not what we see in the data

• Assuming one believes that the others contribute a positive amount on average:

- Assuming one believes that the others contribute a positive amount on average:
 - reciprocity (Sugden 1984; Rabin 1993; Dufwenberg & Kirchsteiger 2004)

- Assuming one believes that the others contribute a positive amount on average:
 - reciprocity (Sugden 1984; Rabin 1993; Dufwenberg & Kirchsteiger 2004)
 - inequality aversion (Fehr & Schmidt 1999; Bolton & Ockenfels 2000)

- Assuming one believes that the others contribute a positive amount on average:
 - reciprocity (Sugden 1984; Rabin 1993; Dufwenberg & Kirchsteiger 2004)
 - inequality aversion (Fehr & Schmidt 1999; Bolton & Ockenfels 2000)
 - conformity (Bardsley & Sausgruber 2005)

- Assuming one believes that the others contribute a positive amount on average:
 - reciprocity (Sugden 1984; Rabin 1993; Dufwenberg & Kirchsteiger 2004)
 - inequality aversion (Fehr & Schmidt 1999; Bolton & Ockenfels 2000)
 - conformity (Bardsley & Sausgruber 2005)
 - prediction: contribution positively correlated with beliefs; it can be anything, depending on beliefs and particular preferences

- Assuming one believes that the others contribute a positive amount on average:
 - reciprocity (Sugden 1984; Rabin 1993; Dufwenberg & Kirchsteiger 2004)
 - inequality aversion (Fehr & Schmidt 1999; Bolton & Ockenfels 2000)
 - conformity (Bardsley & Sausgruber 2005)
 - prediction: contribution positively correlated with beliefs; it can be anything, depending on beliefs and particular preferences
- Evidence: conditional cooperation (Fischbacher et al. 2001; Herrmann & Thoni 2009)

- Assuming one believes that the others contribute a positive amount on average:
 - reciprocity (Sugden 1984; Rabin 1993; Dufwenberg & Kirchsteiger 2004)
 - inequality aversion (Fehr & Schmidt 1999; Bolton & Ockenfels 2000)
 - conformity (Bardsley & Sausgruber 2005)
 - prediction: contribution positively correlated with beliefs; it can be anything, depending on beliefs and particular preferences
- Evidence: conditional cooperation (Fischbacher et al. 2001; Herrmann & Thoni 2009)
 - use strategy method to elicit contributions conditional on various possible average contributions of the others

- Assuming one believes that the others contribute a positive amount on average:
 - reciprocity (Sugden 1984; Rabin 1993; Dufwenberg & Kirchsteiger 2004)
 - inequality aversion (Fehr & Schmidt 1999; Bolton & Ockenfels 2000)
 - conformity (Bardsley & Sausgruber 2005)
 - prediction: contribution positively correlated with beliefs; it can be anything, depending on beliefs and particular preferences
- Evidence: conditional cooperation (Fischbacher et al. 2001; Herrmann & Thoni 2009)
 - use strategy method to elicit contributions conditional on various possible average contributions of the others
 - conditional cooperators (50%): positive dependence

- Assuming one believes that the others contribute a positive amount on average:
 - reciprocity (Sugden 1984; Rabin 1993; Dufwenberg & Kirchsteiger 2004)
 - inequality aversion (Fehr & Schmidt 1999; Bolton & Ockenfels 2000)
 - conformity (Bardsley & Sausgruber 2005)
 - prediction: contribution positively correlated with beliefs; it can be anything, depending on beliefs and particular preferences
- Evidence: conditional cooperation (Fischbacher et al. 2001; Herrmann & Thoni 2009)
 - use strategy method to elicit contributions conditional on various possible average contributions of the others
 - conditional cooperators (50%): positive dependence
 - free-riders (33%): always contribute zero

- Assuming one believes that the others contribute a positive amount on average:
 - reciprocity (Sugden 1984; Rabin 1993; Dufwenberg & Kirchsteiger 2004)
 - inequality aversion (Fehr & Schmidt 1999; Bolton & Ockenfels 2000)
 - conformity (Bardsley & Sausgruber 2005)
 - prediction: contribution positively correlated with beliefs; it can be anything, depending on beliefs and particular preferences
- Evidence: conditional cooperation (Fischbacher et al. 2001; Herrmann & Thoni 2009)
 - use strategy method to elicit contributions conditional on various possible average contributions of the others
 - conditional cooperators (50%): positive dependence
 - free-riders (33%): always contribute zero
 - other types (17%): "hump-shaped," random, etc.

CROWDING-OUT EFFECT OF A LOTTERY

• If positive contributions are driven by reciprocity, introduction of a fixed-prize lottery may have a **crowding-out effect** on contributions

CROWDING-OUT EFFECT OF A LOTTERY

- If positive contributions are driven by reciprocity, introduction of a fixed-prize lottery may have a **crowding-out effect** on contributions
 - others' motivation is no longer necessarily driven by social preferences

CROWDING-OUT EFFECT OF A LOTTERY

- If positive contributions are driven by reciprocity, introduction of a fixed-prize lottery may have a **crowding-out effect** on contributions
 - others' motivation is no longer necessarily driven by social preferences
 - instead, it may be driven by private monetary incentives, namely a desire to win the prize
- If positive contributions are driven by reciprocity, introduction of a fixed-prize lottery may have a **crowding-out effect** on contributions
 - others' motivation is no longer necessarily driven by social preferences
 - instead, it may be driven by private monetary incentives, namely a desire to win the prize
- There is evidence of monetary incentives crowding-out pro-social behavior in many domains:

- If positive contributions are driven by reciprocity, introduction of a fixed-prize lottery may have a **crowding-out effect** on contributions
 - others' motivation is no longer necessarily driven by social preferences
 - instead, it may be driven by private monetary incentives, namely a desire to win the prize
- There is evidence of monetary incentives crowding-out pro-social behavior in many domains:
 - contract design (Fehr & Gächter 2000; Falk & Kosfeld 2006)

- If positive contributions are driven by reciprocity, introduction of a fixed-prize lottery may have a **crowding-out effect** on contributions
 - others' motivation is no longer necessarily driven by social preferences
 - instead, it may be driven by private monetary incentives, namely a desire to win the prize
- There is evidence of monetary incentives crowding-out pro-social behavior in many domains:
 - contract design (Fehr & Gächter 2000; Falk & Kosfeld 2006)
 - volunteering (Frey & Goette 1999; Gneezy & Rustichini 2000)

- If positive contributions are driven by reciprocity, introduction of a fixed-prize lottery may have a **crowding-out effect** on contributions
 - others' motivation is no longer necessarily driven by social preferences
 - instead, it may be driven by private monetary incentives, namely a desire to win the prize
- There is evidence of monetary incentives crowding-out pro-social behavior in many domains:
 - contract design (Fehr & Gächter 2000; Falk & Kosfeld 2006)
 - volunteering (Frey & Goette 1999; Gneezy & Rustichini 2000)
 - charitable giving (Meier 2007)

- If positive contributions are driven by reciprocity, introduction of a fixed-prize lottery may have a **crowding-out effect** on contributions
 - others' motivation is no longer necessarily driven by social preferences
 - instead, it may be driven by private monetary incentives, namely a desire to win the prize
- There is evidence of monetary incentives crowding-out pro-social behavior in many domains:
 - contract design (Fehr & Gächter 2000; Falk & Kosfeld 2006)
 - volunteering (Frey & Goette 1999; Gneezy & Rustichini 2000)
 - charitable giving (Meier 2007)
 - trust relationship (Bohnet et al. 2001; Fehr & List 2004)

• Crowding-out does not happen if positive contributions are driven by inequality aversion or conformity

- Crowding-out does not happen if positive contributions are driven by inequality aversion or conformity
- Crowding-out, even if present, is not identifiable from a direct comparison of VCM and a fixed-prize lottery

- Crowding-out does not happen if positive contributions are driven by inequality aversion or conformity
- Crowding-out, even if present, is not identifiable from a direct comparison of VCM and a fixed-prize lottery
- Reason: relative to VCM, a lottery introduces two new effects on contributions:

- Crowding-out does not happen if positive contributions are driven by inequality aversion or conformity
- Crowding-out, even if present, is not identifiable from a direct comparison of VCM and a fixed-prize lottery
- Reason: relative to VCM, a lottery introduces two new effects on contributions:
 - $1. \ \mbox{a}$ decrease due to the crowding-out effect

- Crowding-out does not happen if positive contributions are driven by inequality aversion or conformity
- Crowding-out, even if present, is not identifiable from a direct comparison of VCM and a fixed-prize lottery
- Reason: relative to VCM, a lottery introduces two new effects on contributions:
 - 1. a decrease due to the crowding-out effect
 - 2. an increase due to the monetary incentive to win the prize

RESEARCH QUESTIONS

• Primary questions:

1. Does introduction of a lottery crowd-out voluntary contributions?

- 1. Does introduction of a lottery crowd-out voluntary contributions?
- 2. If yes, can we associate such effect with being a conditional contributor in the VCM?

- 1. Does introduction of a lottery crowd-out voluntary contributions?
- 2. If yes, can we associate such effect with being a conditional contributor in the VCM?
- 3. Does introduction of a lottery increase public good provision separately among conditional cooperators, free-riders and the other types?

- 1. Does introduction of a lottery crowd-out voluntary contributions?
- 2. If yes, can we associate such effect with being a conditional contributor in the VCM?
- 3. Does introduction of a lottery increase public good provision separately among conditional cooperators, free-riders and the other types?
- 4. Are these effects sensitive to the size of lottery prize?

• Primary questions:

- 1. Does introduction of a lottery crowd-out voluntary contributions?
- 2. If yes, can we associate such effect with being a conditional contributor in the VCM?
- 3. Does introduction of a lottery increase public good provision separately among conditional cooperators, free-riders and the other types?
- 4. Are these effects sensitive to the size of lottery prize?

• Secondary questions (replications):

• Primary questions:

- 1. Does introduction of a lottery crowd-out voluntary contributions?
- 2. If yes, can we associate such effect with being a conditional contributor in the VCM?
- 3. Does introduction of a lottery increase public good provision separately among conditional cooperators, free-riders and the other types?
- 4. Are these effects sensitive to the size of lottery prize?

• Secondary questions (replications):

1. Does introduction of a lottery increase public good provision overall?

• Primary questions:

- 1. Does introduction of a lottery crowd-out voluntary contributions?
- 2. If yes, can we associate such effect with being a conditional contributor in the VCM?
- 3. Does introduction of a lottery increase public good provision separately among conditional cooperators, free-riders and the other types?
- 4. Are these effects sensitive to the size of lottery prize?

• Secondary questions (replications):

- 1. Does introduction of a lottery increase public good provision overall?
- 2. Is the distribution of types (conditional cooperator, free-rider, others) similar as in the previous studies?

• Effectiveness of using a fixed-prize lottery to finance public goods may depend on the distribution of social preferences in the target population

- Effectiveness of using a fixed-prize lottery to finance public goods may depend on the distribution of social preferences in the target population
- Lotteries may be effective in populations dominated by free-riders but perhaps not in populations dominated by conditional cooperators

- Effectiveness of using a fixed-prize lottery to finance public goods may depend on the distribution of social preferences in the target population
- Lotteries may be effective in populations dominated by free-riders but perhaps not in populations dominated by conditional cooperators
- In the latter case, one may prefer using other designs to increase contributions (matching, thresholds, etc.)

- Effectiveness of using a fixed-prize lottery to finance public goods may depend on the distribution of social preferences in the target population
- Lotteries may be effective in populations dominated by free-riders but perhaps not in populations dominated by conditional cooperators
- In the latter case, one may prefer using other designs to increase contributions (matching, thresholds, etc.)
- Information on the social preference profile of the target population:

- Effectiveness of using a fixed-prize lottery to finance public goods may depend on the distribution of social preferences in the target population
- Lotteries may be effective in populations dominated by free-riders but perhaps not in populations dominated by conditional cooperators
- In the latter case, one may prefer using other designs to increase contributions (matching, thresholds, etc.)
- Information on the social preference profile of the target population:
 - small-scale field experiment

- Effectiveness of using a fixed-prize lottery to finance public goods may depend on the distribution of social preferences in the target population
- Lotteries may be effective in populations dominated by free-riders but perhaps not in populations dominated by conditional cooperators
- In the latter case, one may prefer using other designs to increase contributions (matching, thresholds, etc.)
- Information on the social preference profile of the target population:
 - small-scale field experiment
 - national survey that includes data on incentivized decisions

- Effectiveness of using a fixed-prize lottery to finance public goods may depend on the distribution of social preferences in the target population
- Lotteries may be effective in populations dominated by free-riders but perhaps not in populations dominated by conditional cooperators
- In the latter case, one may prefer using other designs to increase contributions (matching, thresholds, etc.)
- Information on the social preference profile of the target population:
 - small-scale field experiment
 - national survey that includes data on incentivized decisions
 - repeated interaction with the population of donors

INTRODUCTION LITERATURE DESIGN RESULTS CONCLUSION

EXISTING LITERATURE ON THE EFFECT OF A FIXED-PRIZE LOTTERY

- **Theory**: fixed-prize lottery improves social efficiency in comparison to VCM:
 - Morgan (2000)

INTRODUCTION LITERATURE DESIGN RESULTS CONCLUSION

EXISTING LITERATURE ON THE EFFECT OF A FIXED-PRIZE LOTTERY

- **Theory**: fixed-prize lottery improves social efficiency in comparison to VCM:
 - Morgan (2000)
- Experiments: public good provision increases under lotteries as opposed to VCM:
 - Morgan and Sefton (2000)
 - Orzen (2008)

Example: Linear Public Good Game

• Notation:

Example: Linear Public Good Game

• Notation:

• *n* = number of potential contributors

- Notation:
 - *n* = number of potential contributors
 - w = endowment of private good

- Notation:
 - *n* = number of potential contributors
 - w = endowment of private good
 - $\alpha = marginal per-capita return$

- Notation:
 - *n* = number of potential contributors
 - w = endowment of private good
 - $\alpha = marginal per-capita return$
 - R =lottery prize

- Notation:
 - *n* = number of potential contributors
 - w = endowment of private good
 - $\alpha = marginal per-capita return$
 - R = lottery prize
 - $g_i = \text{contribution of agent } i$

- Notation:
 - *n* = number of potential contributors
 - w = endowment of private good
 - $\alpha = marginal per-capita return$
 - R = lottery prize
 - $g_i = \text{contribution of agent } i$
- Expected monetary payoff:

$$E(\pi_i) = w - g_i + \alpha \left(\sum_{j=1}^n g_j - R\right) + \frac{g_i}{\sum_{j=1}^n g_j} R$$

EXAMPLE: LINEAR PUBLIC GOODS GAME (CONT'D)

• Symmetric Nash equilibrium contribution:

$$g_i = g^* \equiv \frac{n-1}{n^2(1-\alpha)}R$$

EXAMPLE: LINEAR PUBLIC GOODS GAME (CONT'D)

• Symmetric Nash equilibrium contribution:

$$g_i = g^* \equiv \frac{n-1}{n^2(1-\alpha)}R$$

• Equilibrium public good provision:

$$G^* = ng^* - R = \frac{n\alpha - 1}{n(1 - \alpha)}R$$
EXAMPLE: LINEAR PUBLIC GOODS GAME (CONT'D)

• Symmetric Nash equilibrium contribution:

$$g_i = g^* \equiv \frac{n-1}{n^2(1-\alpha)}R$$

• Equilibrium public good provision:

$$G^* = ng^* - R = \frac{n\alpha - 1}{n(1 - \alpha)}R$$

• It is possible to increase social efficiency by increasing R

 $\bullet~4\times2$ factorial design

- $\bullet~4\times2$ factorial design
- **Dimension 1**: mechanism (within-subject)

- 4×2 factorial design
- Dimension 1: mechanism (within-subject) 1. VCM

- $\bullet~4\times2$ factorial design
- Dimension 1: mechanism (within-subject)
 - 1. VCM
 - 2. lottery

- $\bullet~4\times2$ factorial design
- Dimension 1: mechanism (within-subject)
 - 1. VCM
 - 2. lottery
 - 3. intermediate, fixed: "I can't win, the others can."

- $\bullet~4\times2$ factorial design
- **Dimension 1**: mechanism (within-subject)
 - 1. VCM
 - 2. lottery
 - 3. intermediate, fixed: "I can't win, the others can."
 - 4. intermediate, lottery: "I can win, someone else can't."

- $\bullet~4\times2$ factorial design
- **Dimension 1**: mechanism (within-subject)
 - 1. VCM
 - 2. lottery
 - 3. intermediate, fixed: "I can't win, the others can."
 - 4. intermediate, lottery: "I can win, someone else can't."
- Parametrization:

- $\bullet~4\times2$ factorial design
- **Dimension 1**: mechanism (within-subject)
 - 1. VCM
 - 2. lottery
 - 3. intermediate, fixed: "I can't win, the others can."
 - 4. intermediate, lottery: "I can win, someone else can't."
- Parametrization:
 - group size: n = 4

- $\bullet~4\times2$ factorial design
- **Dimension 1**: mechanism (within-subject)
 - 1. VCM
 - 2. lottery
 - 3. intermediate, fixed: "I can't win, the others can."
 - 4. intermediate, lottery: "I can win, someone else can't."
- Parametrization:
 - group size: n = 4
 - endowment of private good: w = 10

- 4×2 factorial design
- **Dimension 1**: mechanism (within-subject)
 - 1. VCM
 - 2. lottery
 - 3. intermediate, fixed: "I can't win, the others can."
 - 4. intermediate, lottery: "I can win, someone else can't."

• Parametrization:

- group size: n = 4
- endowment of private good: w = 10
- marginal per-capita return: $\alpha = 0.75$

- 4×2 factorial design
- **Dimension 1**: mechanism (within-subject)
 - 1. VCM
 - 2. lottery
 - 3. intermediate, fixed: "I can't win, the others can."
 - 4. intermediate, lottery: "I can win, someone else can't."
- Parametrization:
 - group size: n = 4
 - endowment of private good: w = 10
 - marginal per-capita return: $\alpha = 0.75$
- Dimension 2: size of the lottery prize (between-subject)

- 4×2 factorial design
- Dimension 1: mechanism (within-subject)
 - 1. VCM
 - 2. lottery
 - 3. intermediate, fixed: "I can't win, the others can."
 - 4. intermediate, lottery: "I can win, someone else can't."
- Parametrization:
 - group size: n = 4
 - endowment of private good: w = 10
 - marginal per-capita return: $\alpha = 0.75$

• Dimension 2: size of the lottery prize (between-subject) 1. R = 8

- 4×2 factorial design
- **Dimension 1**: mechanism (within-subject)
 - 1. VCM
 - 2. lottery
 - 3. intermediate, fixed: "I can't win, the others can."
 - 4. intermediate, lottery: "I can win, someone else can't."

Parametrization:

- group size: n = 4
- endowment of private good: w = 10
- marginal per-capita return: $\alpha = 0.75$

• Dimension 2: size of the lottery prize (between-subject)

- 1. R = 8
- 2. R = 12

• Intermediate, fixed:

- Intermediate, fixed:
 - a subject cannot win the prize and receives a fixed payment of 0.25*R* instead

- Intermediate, fixed:
 - a subject cannot win the prize and receives a fixed payment of 0.25*R* instead
 - the others compete for the prize of 0.75R

- Intermediate, fixed:
 - a subject cannot win the prize and receives a fixed payment of 0.25*R* instead
 - the others compete for the prize of 0.75R
- Intermediate, lottery:

- Intermediate, fixed:
 - a subject cannot win the prize and receives a fixed payment of 0.25*R* instead
 - the others compete for the prize of 0.75R
- Intermediate, lottery:
 - a subject, together with two others, competes for the prize of 0.75R

- Intermediate, fixed:
 - a subject cannot win the prize and receives a fixed payment of 0.25*R* instead
 - the others compete for the prize of 0.75R
- Intermediate, lottery:
 - a subject, together with two others, competes for the prize of 0.75R
 - the remaining group member receives the prize of 0.25R

• Aggregate contributions may be insufficient to finance the lottery prize

- Aggregate contributions may be insufficient to finance the lottery prize
- **Potential solution 1**: force minimum contributions

- Aggregate contributions may be insufficient to finance the lottery prize
- **Potential solution 1**: force minimum contributions
 - disadvantage: if contributions can be forced, we can in principle enforce a socially efficient outcome

- Aggregate contributions may be insufficient to finance the lottery prize
- Potential solution 1: force minimum contributions
 - disadvantage: if contributions can be forced, we can in principle enforce a socially efficient outcome
- Potential solution 2: use outside money to finance the prize

- Aggregate contributions may be insufficient to finance the lottery prize
- Potential solution 1: force minimum contributions
 - disadvantage: if contributions can be forced, we can in principle enforce a socially efficient outcome
- Potential solution 2: use outside money to finance the prize
 - Issue 1: where does the outside money come from?

- Aggregate contributions may be insufficient to finance the lottery prize
- Potential solution 1: force minimum contributions
 - disadvantage: if contributions can be forced, we can in principle enforce a socially efficient outcome
- Potential solution 2: use outside money to finance the prize
 - Issue 1: where does the outside money come from?
 - Issue 2: if present, the outside money should be present in all within-subject treatments

- Aggregate contributions may be insufficient to finance the lottery prize
- Potential solution 1: force minimum contributions
 - disadvantage: if contributions can be forced, we can in principle enforce a socially efficient outcome
- Potential solution 2: use outside money to finance the prize
 - Issue 1: where does the outside money come from?
 - Issue 2: if present, the outside money should be present in all within-subject treatments
 - **Issue 3**: if so, if not used for the lottery prize (e.g., in VCM), should the money be contributed to the public good or should it be distributed to subjects?

• Additional *R* units of the private good on aggregate:

- Additional *R* units of the private good on aggregate:
 - VCM: each subject receives 0.25R

- Additional *R* units of the private good on aggregate:
 - VCM: each subject receives 0.25R
 - Lottery: finances the lottery prize

- Additional *R* units of the private good on aggregate:
 - VCM: each subject receives 0.25R
 - Lottery: finances the lottery prize
 - **Intermediate**: the lottery non-participant receives 0.25*R*, the remaining 0.75*R* finances the lottery prize

- Additional *R* units of the private good on aggregate:
 - VCM: each subject receives 0.25R
 - Lottery: finances the lottery prize
 - **Intermediate**: the lottery non-participant receives 0.25*R*, the remaining 0.75*R* finances the lottery prize
- Implications across within-subject treatments:

- Additional *R* units of the private good on aggregate:
 - VCM: each subject receives 0.25R
 - Lottery: finances the lottery prize
 - **Intermediate**: the lottery non-participant receives 0.25*R*, the remaining 0.75*R* finances the lottery prize
- Implications across within-subject treatments:
 - given contributions, the aggregate amount of the private good and the amount of the public good are independent of the treatment

- Additional *R* units of the private good on aggregate:
 - VCM: each subject receives 0.25R
 - Lottery: finances the lottery prize
 - **Intermediate**: the lottery non-participant receives 0.25*R*, the remaining 0.75*R* finances the lottery prize
- Implications across within-subject treatments:
 - given contributions, the aggregate amount of the private good and the amount of the public good are independent of the treatment
 - no aggregate wealth effect

- Additional *R* units of the private good on aggregate:
 - VCM: each subject receives 0.25R
 - Lottery: finances the lottery prize
 - **Intermediate**: the lottery non-participant receives 0.25*R*, the remaining 0.75*R* finances the lottery prize
- Implications across within-subject treatments:
 - given contributions, the aggregate amount of the private good and the amount of the public good are independent of the treatment
 - no aggregate wealth effect
 - equivalent to a forced contribution of 0.25R per subject

- Additional *R* units of the private good on aggregate:
 - VCM: each subject receives 0.25R
 - Lottery: finances the lottery prize
 - **Intermediate**: the lottery non-participant receives 0.25*R*, the remaining 0.75*R* finances the lottery prize
- Implications across within-subject treatments:
 - given contributions, the aggregate amount of the private good and the amount of the public good are independent of the treatment
 - no aggregate wealth effect
 - equivalent to a forced contribution of 0.25R per subject
 - the same choice space: $g_i \in \{0, 1, .., 10\}$
OUR SOLUTION

- Additional *R* units of the private good on aggregate:
 - VCM: each subject receives 0.25R
 - Lottery: finances the lottery prize
 - **Intermediate**: the lottery non-participant receives 0.25*R*, the remaining 0.75*R* finances the lottery prize
- Implications across within-subject treatments:
 - given contributions, the aggregate amount of the private good and the amount of the public good are independent of the treatment
 - no aggregate wealth effect
 - equivalent to a forced contribution of 0.25R per subject
 - the same choice space: $g_i \in \{0, 1, .., 10\}$
 - sum of contributions is equal to the amount of the public good (no need to subtract the lottery prize)

• Symmetric risk-neutral Nash equilibrium:

- Symmetric risk-neutral Nash equilibrium:
 - no change in individual contribution:

$$g_i = g^* \equiv \frac{n-1}{n^2(1-\alpha)}R$$

- Symmetric risk-neutral Nash equilibrium:
 - no change in individual contribution:

$$g_i = g^* \equiv \frac{n-1}{n^2(1-\alpha)}R$$

• amount of the public good: no subtraction of the lottery prize

$$G^* = ng^* = \frac{n-1}{n(1-\alpha)}R$$

- Symmetric risk-neutral Nash equilibrium:
 - no change in individual contribution:

$$g_i = g^* \equiv \frac{n-1}{n^2(1-\alpha)}R$$

• amount of the public good: no subtraction of the lottery prize

$$G^* = ng^* = \frac{n-1}{n(1-\alpha)}R$$

Under our parametrization,

$$\frac{n-1}{n^2(1-\alpha)} = 0.75$$

- Symmetric risk-neutral Nash equilibrium:
 - no change in individual contribution:

$$g_i = g^* \equiv \frac{n-1}{n^2(1-\alpha)}R$$

• amount of the public good: no subtraction of the lottery prize

$$G^* = ng^* = \frac{n-1}{n(1-\alpha)}R$$

Under our parametrization,

$$\frac{n-1}{n^2(1-\alpha)} = 0.75$$

• Design constraint: R should be divisible by 4

• *R* = 8:

- *R* = 8:
 - implies $g^* = 6$
 - targets the mid-range of the choice space

- *R* = 8:
 - implies $g^* = 6$
 - targets the mid-range of the choice space
- *R* = 12:

- *R* = 8:
 - implies $g^* = 6$
 - targets the mid-range of the choice space

•
$$R = 12$$
:

- *R* = 8:
 - implies $g^* = 6$
 - targets the mid-range of the choice space
- *R* = 12:
 - implies g* = 9
 - targets the upper-range of the choice space

- *R* = 8:
 - implies $g^* = 6$
 - targets the mid-range of the choice space
- *R* = 12:
 - implies *g*^{*} = 9
 - targets the upper-range of the choice space
- Further possible values of R:

- *R* = 8:
 - implies $g^* = 6$
 - targets the mid-range of the choice space
- *R* = 12:
 - implies *g*^{*} = 9
 - targets the upper-range of the choice space
- Further possible values of R:
 - R = 4: we consider it to be too low of a treatment effect

- *R* = 8:
 - implies $g^* = 6$
 - targets the mid-range of the choice space
- *R* = 12:
 - implies *g*^{*} = 9
 - targets the upper-range of the choice space
- Further possible values of R:
 - R = 4: we consider it to be too low of a treatment effect
 - *R* = 16: implies *g*^{*} = 12, suggesting a boundary choice of contributions

• Three stages, order balanced (6 possible permutations):

• Three stages, order balanced (6 possible permutations): 1. VCM

- Three stages, order balanced (6 possible permutations):
 - 1. VCM
 - 2. Intermediate

- Three stages, order balanced (6 possible permutations):
 - 1. VCM
 - 2. Intermediate
 - 3. Lottery

- Three stages, order balanced (6 possible permutations):
 - 1. VCM
 - 2. Intermediate
 - 3. Lottery
- VCM and lottery:

- Three stages, order balanced (6 possible permutations):
 - 1. VCM
 - 2. Intermediate
 - 3. Lottery
- VCM and lottery:
 - 1. unconditional contributions

- Three stages, order balanced (6 possible permutations):
 - 1. VCM
 - 2. Intermediate
 - 3. Lottery
- VCM and lottery:
 - 1. unconditional contributions
 - 2. contributions conditional on the others' average contribution

- Three stages, order balanced (6 possible permutations):
 - 1. VCM
 - 2. Intermediate
 - 3. Lottery
- VCM and lottery:
 - 1. unconditional contributions
 - 2. contributions conditional on the others' average contribution
- Intermediate:

- Three stages, order balanced (6 possible permutations):
 - 1. VCM
 - 2. Intermediate
 - 3. Lottery
- VCM and lottery:
 - 1. unconditional contributions
 - 2. contributions conditional on the others' average contribution
- Intermediate:
 - 1. unconditional contributions in the fixed case

- Three stages, order balanced (6 possible permutations):
 - 1. VCM
 - 2. Intermediate
 - 3. Lottery
- VCM and lottery:
 - 1. unconditional contributions
 - 2. contributions conditional on the others' average contribution
- Intermediate:
 - 1. unconditional contributions in the fixed case
 - 2. unconditional contributions in the lottery case (order balanced)

- Three stages, order balanced (6 possible permutations):
 - 1. VCM
 - 2. Intermediate
 - 3. Lottery
- VCM and lottery:
 - 1. unconditional contributions
 - 2. contributions conditional on the others' average contribution
- Intermediate:
 - 1. unconditional contributions in the fixed case
 - 2. unconditional contributions in the lottery case (order balanced)
 - 3. conditional contributions in the fixed case

- Three stages, order balanced (6 possible permutations):
 - 1. VCM
 - 2. Intermediate
 - 3. Lottery
- VCM and lottery:
 - 1. unconditional contributions
 - 2. contributions conditional on the others' average contribution
- Intermediate:
 - 1. unconditional contributions in the fixed case
 - 2. unconditional contributions in the lottery case (order balanced)
 - 3. conditional contributions in the fixed case
 - 4. conditional contributions in the lottery case (order balanced)

- Three stages, order balanced (6 possible permutations):
 - 1. VCM
 - 2. Intermediate
 - 3. Lottery
- VCM and lottery:
 - 1. unconditional contributions
 - 2. contributions conditional on the others' average contribution
- Intermediate:
 - 1. unconditional contributions in the fixed case
 - 2. unconditional contributions in the lottery case (order balanced)
 - 3. conditional contributions in the fixed case
 - 4. conditional contributions in the lottery case (order balanced)
- Separate printed instructions for each stage, changes relative to the previous stage highlighted

• Sessions in the Laboratory of Experimental Economics, University of Economics in Prague, in October 2013

- Sessions in the Laboratory of Experimental Economics, University of Economics in Prague, in October 2013
- Subjects: mostly students from the University of Economics and other universities in Prague

- Sessions in the Laboratory of Experimental Economics, University of Economics in Prague, in October 2013
- Subjects: mostly students from the University of Economics and other universities in Prague
- Experiments conducted in English

- Sessions in the Laboratory of Experimental Economics, University of Economics in Prague, in October 2013
- Subjects: mostly students from the University of Economics and other universities in Prague
- Experiments conducted in English
- Experiment timeline:

- Sessions in the Laboratory of Experimental Economics, University of Economics in Prague, in October 2013
- Subjects: mostly students from the University of Economics and other universities in Prague
- Experiments conducted in English
- Experiment timeline:
 - 1. three stages

- Sessions in the Laboratory of Experimental Economics, University of Economics in Prague, in October 2013
- Subjects: mostly students from the University of Economics and other universities in Prague
- Experiments conducted in English
- Experiment timeline:
 - 1. three stages
 - 2. demographic questionnaire

- Sessions in the Laboratory of Experimental Economics, University of Economics in Prague, in October 2013
- Subjects: mostly students from the University of Economics and other universities in Prague
- Experiments conducted in English
- Experiment timeline:
 - 1. three stages
 - 2. demographic questionnaire
 - 3. subject payment

- Sessions in the Laboratory of Experimental Economics, University of Economics in Prague, in October 2013
- Subjects: mostly students from the University of Economics and other universities in Prague
- Experiments conducted in English
- Experiment timeline:
 - 1. three stages
 - 2. demographic questionnaire
 - 3. subject payment
- Stage timeline:
- Sessions in the Laboratory of Experimental Economics, University of Economics in Prague, in October 2013
- Subjects: mostly students from the University of Economics and other universities in Prague
- Experiments conducted in English
- Experiment timeline:
 - 1. three stages
 - 2. demographic questionnaire
 - 3. subject payment
- Stage timeline:
 - 1. first part of printed instructions

- Sessions in the Laboratory of Experimental Economics, University of Economics in Prague, in October 2013
- Subjects: mostly students from the University of Economics and other universities in Prague
- Experiments conducted in English
- Experiment timeline:
 - 1. three stages
 - 2. demographic questionnaire
 - 3. subject payment
- Stage timeline:
 - 1. first part of printed instructions
 - 2. quiz

- Sessions in the Laboratory of Experimental Economics, University of Economics in Prague, in October 2013
- Subjects: mostly students from the University of Economics and other universities in Prague
- Experiments conducted in English
- Experiment timeline:
 - 1. three stages
 - 2. demographic questionnaire
 - 3. subject payment
- Stage timeline:
 - 1. first part of printed instructions
 - 2. quiz
 - 3. second part of printed instructions

- Sessions in the Laboratory of Experimental Economics, University of Economics in Prague, in October 2013
- Subjects: mostly students from the University of Economics and other universities in Prague
- Experiments conducted in English
- Experiment timeline:
 - 1. three stages
 - 2. demographic questionnaire
 - 3. subject payment
- Stage timeline:
 - 1. first part of printed instructions
 - 2. quiz
 - 3. second part of printed instructions
 - 4. inputting of decisions

• Sample size:

- Sample size:
 - 1. R = 8: 96 subjects (42 men and 54 women)

• Sample size:

- 1. R = 8: 96 subjects (42 men and 54 women)
- 2. R = 12: 96 subjects (47 men and 49 women)

- Sample size:
 - 1. R = 8: 96 subjects (42 men and 54 women)
 - 2. R = 12: 96 subjects (47 men and 49 women)
- Strategy method:

- Sample size:
 - 1. R = 8: 96 subjects (42 men and 54 women)
 - 2. R = 12: 96 subjects (47 men and 49 women)
- Strategy method:
 - paying for one of the three stages

- Sample size:
 - 1. R = 8: 96 subjects (42 men and 54 women)
 - 2. R = 12: 96 subjects (47 men and 49 women)
- Strategy method:
 - paying for one of the three stages
 - one subject chosen as the conditional contributor

- Sample size:
 - 1. R = 8: 96 subjects (42 men and 54 women)
 - 2. R = 12: 96 subjects (47 men and 49 women)
- Strategy method:
 - paying for one of the three stages
 - one subject chosen as the conditional contributor
 - IM: one subject chosen as the lottery non-participant

- Sample size:
 - 1. R = 8: 96 subjects (42 men and 54 women)
 - 2. R = 12: 96 subjects (47 men and 49 women)
- Strategy method:
 - paying for one of the three stages
 - one subject chosen as the conditional contributor
 - IM: one subject chosen as the lottery non-participant
- Exchange rate: 1 ECU = 10 CZK (0.4 EUR)

- Sample size:
 - 1. R = 8: 96 subjects (42 men and 54 women)
 - 2. R = 12: 96 subjects (47 men and 49 women)
- Strategy method:
 - paying for one of the three stages
 - one subject chosen as the conditional contributor
 - IM: one subject chosen as the lottery non-participant
- Exchange rate: 1 ECU = 10 CZK (0.4 EUR)
- Sessions lasted about 2 hours

- Sample size:
 - 1. R = 8: 96 subjects (42 men and 54 women)
 - 2. R = 12: 96 subjects (47 men and 49 women)
- Strategy method:
 - paying for one of the three stages
 - one subject chosen as the conditional contributor
 - IM: one subject chosen as the lottery non-participant
- Exchange rate: 1 ECU = 10 CZK (0.4 EUR)
- Sessions lasted about 2 hours
- Average earnings: 332 CZK (13 EUR), including a 100 CZK (4 EUR) show-up fee

UNCONDITIONAL CONTRIBUTIONS

UNCONDITIONAL CONTRIBUTIONS

UNCONDITIONAL CONTRIBUTIONS

INTRODUCTION LITERATURE DESIGN RESULTS CONCLUSION

UNCONDITIONAL CONTRIBUTIONS: TREATMENT EFFECTS

	Lotter	Difference:	
	R = 8	R = 12	(12) - (8)
Lottery - VCM	1.83***	2.46***	0.63
	(0.33)	(0.35)	(0.48)
IM, Fixed - VCM	-1.03*** (0.32)	-1.31*** (0.40)	-0.28 (0.51)
Lottery - IM, Fixed	(0.02) 2.86*** (0.38)	3.77*** (0.41)	0.91 (0.56)

• See how conditional contributions in VCM vary with the average contribution of the other 3 group members (Fischbacher et al. 2001)

- See how conditional contributions in VCM vary with the average contribution of the other 3 group members (Fischbacher et al. 2001)
- Conditional cooperator (CC) (93 subjects):

- See how conditional contributions in VCM vary with the average contribution of the other 3 group members (Fischbacher et al. 2001)
- Conditional cooperator (CC) (93 subjects):
 - weakly increasing (but not flat) pattern, or

- See how conditional contributions in VCM vary with the average contribution of the other 3 group members (Fischbacher et al. 2001)
- Conditional cooperator (CC) (93 subjects):
 - weakly increasing (but not flat) pattern, or
 - Spearman correlation positive and significant at 1 percent

- See how conditional contributions in VCM vary with the average contribution of the other 3 group members (Fischbacher et al. 2001)
- Conditional cooperator (CC) (93 subjects):
 - weakly increasing (but not flat) pattern, or
 - $\bullet\,$ Spearman correlation positive and significant at 1 percent
- Free-rider (FR) (66 subjects):

- See how conditional contributions in VCM vary with the average contribution of the other 3 group members (Fischbacher et al. 2001)
- Conditional cooperator (CC) (93 subjects):
 - weakly increasing (but not flat) pattern, or
 - $\bullet\,$ Spearman correlation positive and significant at 1 percent
- Free-rider (FR) (66 subjects):
 - contributes zero in all conditions

- See how conditional contributions in VCM vary with the average contribution of the other 3 group members (Fischbacher et al. 2001)
- Conditional cooperator (CC) (93 subjects):
 - weakly increasing (but not flat) pattern, or
 - Spearman correlation positive and significant at 1 percent
- Free-rider (FR) (66 subjects):
 - contributes zero in all conditions
- Other (33 subjects):

- See how conditional contributions in VCM vary with the average contribution of the other 3 group members (Fischbacher et al. 2001)
- Conditional cooperator (CC) (93 subjects):
 - weakly increasing (but not flat) pattern, or
 - Spearman correlation positive and significant at 1 percent
- Free-rider (FR) (66 subjects):
 - contributes zero in all conditions
- Other (33 subjects):
 - full contributor (6 subjects)

- See how conditional contributions in VCM vary with the average contribution of the other 3 group members (Fischbacher et al. 2001)
- Conditional cooperator (CC) (93 subjects):
 - weakly increasing (but not flat) pattern, or
 - Spearman correlation positive and significant at 1 percent
- Free-rider (FR) (66 subjects):
 - contributes zero in all conditions
- Other (33 subjects):
 - full contributor (6 subjects)
 - triangular contributor (15 subjects)

- See how conditional contributions in VCM vary with the average contribution of the other 3 group members (Fischbacher et al. 2001)
- Conditional cooperator (CC) (93 subjects):
 - weakly increasing (but not flat) pattern, or
 - Spearman correlation positive and significant at 1 percent
- Free-rider (FR) (66 subjects):
 - contributes zero in all conditions
- Other (33 subjects):
 - full contributor (6 subjects)
 - triangular contributor (15 subjects)
 - unclassified (12 subjects)

- See how conditional contributions in VCM vary with the average contribution of the other 3 group members (Fischbacher et al. 2001)
- Conditional cooperator (CC) (93 subjects):
 - weakly increasing (but not flat) pattern, or
 - Spearman correlation positive and significant at 1 percent
- Free-rider (FR) (66 subjects):
 - contributes zero in all conditions
- Other (33 subjects):
 - full contributor (6 subjects)
 - triangular contributor (15 subjects)
 - unclassified (12 subjects)
- Similar type distribution as in Fischbacher et al. (2001) or Herrmann & Thöni (2009)

UNCONDITIONAL CONTRIBUTIONS: (LOTTERY - VCM) BY TYPE

	All	Lotter	y prize:		Difference:
	Subjects	<i>R</i> = 8	<i>R</i> = 12		(12) - (8)
CCs	1.53***	1.78***	1.34***	_	-0.44
	(0.28)	(0.50)	(0.31)		(0.58)
FRs	3.53***	2.53***	4.73***		2.21**
	(0.48)	(0.58)	(0.74)		(0.93)
Others	1.12**	0.70	1.77*		1.07
	(0.53)	(0.63)	(0.91)		(1.11)
CCs - FRs	_2 00***	-0.75	_3 30***		-2 64***
	(0.55)	(0.76)	(0.80)		(1.10)

UNCONDITIONAL CONTRIBUTIONS: (IM, FIXED - VCM) BY TYPE

	All	Lotter	y prize:		Difference:
	Subjects	<i>R</i> = 8	<i>R</i> = 12		(12) - (8)
CCs	-1.59***	-0.90*	-2.11***	_	-1.21
	(0.39)	(0.53)	(0.55)		(0.76)
FRs	-0.89**	-1.19**	-0.53		0.66
	(0.44)	(0.50)	(0.77)		(0.91)
Others	-0.55	-1.00	0.15		1.15
	(0.46)	(0.64)	(0.59)		(0.87)
				_	
CCs - FRs	-0.70	0.29	-1.58*		-1.87
	(0.59)	(0.73)	(0.94)		(1.19)

UNCONDITIONAL CONTRIBUTIONS: (LOTTERY - IM, FIXED) BY TYPE

	All	Lotter	y prize:		Difference:
	Subjects	<i>R</i> = 8	<i>R</i> = 12	-	(12) - (8)
CCs	3.12***	2.68***	3.45***	-	0.78
	(0.40)	(0.57)	(0.56)		(0.80)
FRs	4.42***	3.72***	5.27***		1.54
	(0.47)	(0.62)	(0.71)		(0.94)
Others	1.67***	1.7*	1.62*		-0.08
	(0.59)	(0.85)	(0.75)		(1.13)
CCs - FRs	-1.31**	-1.05	-1.81**		-0.77
	(0.62)	(0.84)	(0.90)		(1.23)

Peter Katuščák , Tomáš Miklánek
INTRODUCTION LITERATURE DESIGN RESULTS CONCLUSION

CONTINUOUS MEASURE OF COND. COOPERATION

Peter Katuščák , Tomáš Miklánek

Public Goods and Lotteries

CONDITIONAL COOPERATION AND CROWDING-OUT

CONDITIONAL CONTRIBUTIONS

1. Does introduction of a lottery crowd-out voluntary contributions?

- 1. Does introduction of a lottery crowd-out voluntary contributions?
 - yes

- 1. Does introduction of a lottery crowd-out voluntary contributions?
 - yes
- 2. If yes, can we associate such effect with being a conditional contributor in the VCM?

- 1. Does introduction of a lottery crowd-out voluntary contributions?
 - yes
- 2. If yes, can we associate such effect with being a conditional contributor in the VCM?
 - not entirely

1. Does introduction of a lottery crowd-out voluntary contributions?

- 2. If yes, can we associate such effect with being a conditional contributor in the VCM?
 - not entirely
 - some crowding out visible also among free-riders (?)

1. Does introduction of a lottery crowd-out voluntary contributions?

- 2. If yes, can we associate such effect with being a conditional contributor in the VCM?
 - not entirely
 - some crowding out visible also among free-riders (?)
 - the effect is weakly stronger for conditional cooperators in comparison to free-riders or other types, though, especially for the higher lottery prize

1. Does introduction of a lottery crowd-out voluntary contributions?

- 2. If yes, can we associate such effect with being a conditional contributor in the VCM?
 - not entirely
 - some crowding out visible also among free-riders (?)
 - the effect is weakly stronger for conditional cooperators in comparison to free-riders or other types, though, especially for the higher lottery prize
- 3. Does introduction of a lottery increase public good provision separately among conditional cooperators, free-riders and the other types?

1. Does introduction of a lottery crowd-out voluntary contributions?

- 2. If yes, can we associate such effect with being a conditional contributor in the VCM?
 - not entirely
 - some crowding out visible also among free-riders (?)
 - the effect is weakly stronger for conditional cooperators in comparison to free-riders or other types, though, especially for the higher lottery prize
- 3. Does introduction of a lottery increase public good provision separately among conditional cooperators, free-riders and the other types?
 - yes for all types

1. Does introduction of a lottery crowd-out voluntary contributions?

- 2. If yes, can we associate such effect with being a conditional contributor in the VCM?
 - not entirely
 - some crowding out visible also among free-riders (?)
 - the effect is weakly stronger for conditional cooperators in comparison to free-riders or other types, though, especially for the higher lottery prize
- 3. Does introduction of a lottery increase public good provision separately among conditional cooperators, free-riders and the other types?
 - yes for all types
 - most strongly for free-riders

- 4. Are these effects sensitive to the size of lottery prize?
 - crowding-out overall: no

- 4. Are these effects sensitive to the size of lottery prize?
 - crowding-out overall: **no**
 - crowding-out by type: no effect for free-riders and others, evidence of larger crowding out under the higher lottery prize among conditional cooperators

- 4. Are these effects sensitive to the size of lottery prize?
 - crowding-out overall: **no**
 - crowding-out by type: no effect for free-riders and others, evidence of larger crowding out under the higher lottery prize among conditional cooperators
 - overall lottery effect: increase with lottery prize only among free-riders

- crowding-out overall: no
- crowding-out by type: no effect for free-riders and others, evidence of larger crowding out under the higher lottery prize among conditional cooperators
- overall lottery effect: increase with lottery prize only among free-riders
- 5. Appears that, under IM, fixed, subjects interpret:

- crowding-out overall: no
- crowding-out by type: no effect for free-riders and others, evidence of larger crowding out under the higher lottery prize among conditional cooperators
- overall lottery effect: increase with lottery prize only among free-riders
- 5. Appears that, under IM, fixed, subjects interpret:
 - a low contribution as being pro-social

- crowding-out overall: no
- crowding-out by type: no effect for free-riders and others, evidence of larger crowding out under the higher lottery prize among conditional cooperators
- overall lottery effect: increase with lottery prize only among free-riders
- 5. Appears that, under IM, fixed, subjects interpret:
 - a low contribution as being pro-social
 - a high contribution as possibly being greedy

- crowding-out overall: no
- crowding-out by type: no effect for free-riders and others, evidence of larger crowding out under the higher lottery prize among conditional cooperators
- overall lottery effect: increase with lottery prize only among free-riders
- 5. Appears that, under IM, fixed, subjects interpret:
 - a low contribution as being pro-social
 - a high contribution as possibly being greedy
 - the cutoff for a "high" contribution lower under the higher lottery prize