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SENSITIVITY ANALYSIS OF A DSGE 
MODEL

Abstract: 

This  working  paper  aims  at  thoroughly  analyzing  and  interpreting 
results  of  Marco  Ratto's  Global  (and  Local)  Sensitivity  Analysis 
(G/LSA) on a particular dynamic stochastic general equilibrium (DSGE) 
model. The key behavior of the Czech economy is approximated by a 
Lubik and Schorfheide model, which is a small-scale structural general 
equilibrium model of a small open economy. The sensitivity analysis 
class of methods include Stability mapping analysis, Mapping the fit, 
Reduced  form  analysis  with  the  use  of  High  dimensional  model 
representation, and Screening with Morris sampling. 

Abstrakt: 

Tento  working  paper  má  za  cíl  důkladnou  analýzu  a  interpretaci 
výsledků  globální  (a  lokální)  analýzy  citlivosti  Marca  Ratta  na 
konkréním dynamickém stochastickém modelu všeobecné rovnováhy 
(DSGE modelu).  Klíčové chování české ekonomiky je aproximováno 
modelem  Lubika  a  Schorfheida,  což  je  malý  strukturální  model 
všeobecné  rovnováhy  popisující  malou  otevřenou  ekonomiku.  Třída 
metod analýzy citlivosti zahrnuje analýzu mapování stability, mapování 
vyrovnání,  analýzu  redukovaných  koeficientů  pomocí  vícerozměrné 
modelové  reprezentace  a  prověřovací  analýzu  s  Morrisovým 
vzorkováním. 

Recenzoval:
Ing. Adam Remo
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INTRODUCTION
This  working  paper  aims  at  thoroughly  analyzing  and  interpreting 
results  of  Marco  Ratto's  Global  (and  Local)  Sensitivity  Analysis 
(G/LSA) on a particular dynamic stochastic general equilibrium (DSGE) 
model.  This  task  may  need  a  little  explanation  and  the  following 
paragraphs will therefore introduce the reader to this area of research 
and will also try to point out its importance.

Sensitivity or robustness analysis has always been an important part of 
any  modeling.  Nevertheless,  no  complex  sensitivity  analysis  in 
(macro)economic DSGE models was performed until recently. One of 
the first pioneering works is [Saltelli  2004],  which was later updated 
and extended in [Saltelli 2008]. These books introduce a wide variety 
of  tools  to  analyze  sensitivity  characteristics  of  various  models. 
However,  these publications are not  oriented to economic research, 
they  simply  introduce  tools  for  sensitivity  analysis  for  any  possible 
application.

First  straightforward  application  of  tools  developed  in  [Saltelli  2004] 
and [Saltelli 2008] on a macroeconomic DSGE model was published in 
[Ratto  2008a].  This  article  shed light  on many issues,  but  it  simply 
couldn't cover the whole story within the alloted space. This working 
paper therefore tries to go into greater detail of the analysis on a single 
picked case. Completing this task will enable an easier grasp of the G/
LSA tool in all further research. More concretely, the researcher will 
know, what some of the results mean, how the results change under 
different settings etc.

Section 1 describes the investigated model, the data and the software 
used  in  the  analyses.  The following  section  titled  Stability  mapping 
analyses,  which  parts  of  domain  produce  stability,  instability  or 
indeterminacy. This analysis unveils possible critical points and flaws 
of  the  model  itself.  Stability  mapping  doesn't  use  data  so  that  the 
results are valid for the set of model equations only.

Section  3  named  Mapping  the  fit introduces  the  data  set  to  the 
analysis.  This  section  tries  to  describe  the  relation  between  the 
parameters and the fit of trajectory of observable variables. Since more 
parameters  influence  single  observable  variable  and  also  single 
parameter influences possibly more observable variables, there may 
also  be  some  trade-offs.  Second  part  of  the  section  lists  most 
important trade-offs and also offers an explanation to these trade-offs.

The following section explains the so-called  High dimensional model  
representation and  its  use  to  calculate  reduced  form  coefficients. 
These coefficients are then used to Reduced form mapping. This tool 
answers questions like: Which parameters are important to a relation 
between variable A and B? The importance is measured by sensitivity 
indices  –  the  higher  the  sensitivity  index,  the  more  important  the 
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parameter. The section concludes with an overall analysis of sensitivity 
indices, which reveals the most important parameters in the model as 
a whole.

Final  analytical  part,  section  5,  introduces  Morris  sampling.  It  is  a 
method to calculate preliminary results, or in another words, it is used 
for  Screening.  The  main  advantage  of  this  approach  is  that  it  can 
compute approximate results at very low computational costs.

The  following  section  draws  final  Conclusion and  is  followed  by 
References and appendices: Appendix A contains all tables, appendix 
B contains all figures.
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1. PRELIMINARIES
1.1. The model
This  working paper aims at  a thorough  analysis  of  a  single  model, 
which is a model of [Lubik and Schorfheide 2003]1 

1
*

11

11

1
)(2)])(1(2[

))]()(1(2[=

+++

++

−∆−−−∆−−+−

−−−+−

ttttt

tttttt

zEyqE

ERyEy

τ
τααταατα

πταατ

(1)

)(
))(1(2

= 11 tttttttt yy
k

qyEE −
−−+

+∆−∆+ ++ ταατ
ααβπβπ

(2)

*)(1= tttt qe παπ +∆−+∆
(3)

tRttttRtRt eeyyRR ,3211 ))()((1= +∆+−+−+− ψψπψρρ
(4)

tqtqt eqq ,1= +∆∆ −ρ
(5)

tytyt eyy
,*

*
1*

* = +−ρ
(6)

ttt e
,*

*
1*

* =
ππ

πρπ +−

(7)

tztzt ezz ,1= +−ρ
(8)

1 Cited from [Ratto 2008a, p. 123] (hereafter LS model). The citation of the 
model equations is not literal, because sixth equation on page 123 of [Ratto 

2008a] is " tytys eyy
,*1*= +−ρ ", which is obviously an error. Also, in order 

to  prevent  confusion,  an explanation to variables  that have letter  e  in its 

notations follows here: te  in equations (3) and (4) means nominal exchange 

rate,  whereas  te ,⋅  in  equations  (4)–(8)  stands  for  exogenous  shocks. 

Although the notation varies in the number of subscripts, the difference might 
not be obvious at first glance. 
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This is a small-scale structural general equilibrium model of a small 
economy.  This  working  paper  uses  Czech  data  set  so  that  model 
equations  (1)–(8)  describe  elementary  behavior  of  the  Czech 
economy. Due to some difficulties of using Greek letters and sub- and 
superscripts,  somewhat  different  notation  is  used in  Matlab  figures. 
Explanation of variables and parameters and its notation is in table 1. 
Generally,  ∆ denotes first difference so that e. g.  1= −−∆ ttt ξξξ , 

star  superscript  ( * )  relates  to  a  foreign  economy,  subscript  t  

denotes (relative) time and tE  denotes rational expectations made in 

time  t , then e. g.  1+ttEξ  means rational expectations of variable 
ξ for time 1+t  made in time t .

Equation (1)  is  an open economy IS curve.  If  0=α ,  the  equation 
becomes closed economy variant of IS equation. If  1=τ , the world 

output  shocks  *
1+∆ ty  drops out  of  IS  equation and since it  is  not 

present in any other equation but AR1 process (6), it drops out of the 
system completely.

The open economy Phillips curve (2) also collapses to closed economy 
version if 0=α . Consumer price index CPI is introduced in (3) with an 
assumption of a relative version of purchasing power parity.

Equation (4) is a monetary rule, or in another words, a nominal interest 
rate  equation.  It  describes,  how  the  monetary  authority  sets  its 
instrument, when inflation or output depart from their targets or when 
the currency appreciates or depreciates.

Remaining model equations are just AR1 processes, that describe the 
course of terms of trade, foreign output and inflation, and technological 
progress.

1.2. The data
The data span from the first  quarter of  1996 to the third quarter  of 
2008. The source of all  data is Czech Statistical Office and are per 
cent. There are five time series used, their list is in table 2 and they are 
depicted in figure 1.

1.3. Used software
The main tool used in the analysis is the software package [Dynare]. 
More precisely, the analysis uses one of snapshots of Dynare version 
4, which was available at times, when the code was only available via 
a  Subversion  server.  Recently,  Dynare  versions  4.0.0–4.0.2  were 
published as a full release and unfortunately, the analysis doesn't work 
under  these  releases.  The  analysis  also  requires  Global  Sensitivity 
Analysis (hereafter GSA) toolbox by Marco Ratto, which is – according 
to [Dynare] site – beginning to be added to Dynare version 4. This 
toolbox used to be downloadable from Euro-area Economy Modelling 
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Centre  web  pages2,  but  it  is  unfortunately  no  longer  the  case. 
Documentation for these software packages is semifinished and is in 
[Griffoli 2007] for Dynare version 4 and in [Ratto 2008b] for GSA.

2. STABILITY MAPPING
1.1. Theory
Stability mapping helps to detect parameters iX  that are responsible 
for possible "bad behavior" of the model. First step of the computation 
is to define two subsets of a full domain: subset B  produces behavior 
(= good behavior of the model), subset B  produces non-behavior (= 
bad behavior of  the model).  What is considered good behavior and 
what is bad behavior will be concretized later.

N  Monte  Carlo  simulations  are  then  run  over  the  domain,  which 

results in two subsets, )|( BX i  of size n  and )|( BX i  of size n , 

where  Nnn =+ .  The  two  sub-samples  may  come  from  different 

probability  density  functions  (PDFs)  )|( BXf in  and  )|( BXf in . 
Corresponding  cumulative  distribution  functions  (CDFs)  are 

)|( BXF in  and )|( BXF in .

If )|( BXF in  and )|( BXF in  differ for a given parameter iX , the 
parameter may drive bad behavior of the model if its value falls within 

B  subset.  The  shape  of  )|( BXF in  indicates,  whether  rather 

smaller or higher values of  iX  drive the non-behavior.  If  the non-
behavior CDF is to the left from behavior CDF, it indicates that rather 
smaller values of  iX  are more likely to drive non-behavior. On the 
other hand, if the non-behavior CDF is to the right from the behavior 
CDF, it suggests that rather bigger values of iX  drive non-behavior.

In order to obtain also numerical results, a statistic that computes the 
greatest  distance  between  behavior  and  non-behavior  CDFs  is 
computed.  More  formally,  the  (so-called)  Smirnov  d  statistic  is 
defined as 

||)|()|(||sup=)(
,

BXFBXFXd inininn
−

The Smirnov  d  statistic has a domain  [0,1] , where 0  means that 
the  two  (behavior  and non-behavior)  CDFs perfectly  overlap  and  1 
means that the two underlying subsets B  and B  have no common 
elements. In other words, 1=d  means that one of the CDFs reaches 
unity before the other increases from zero.

2 http://eemc.jrc.ec.europa.eu/
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The Smirnov  d  statistic can also be used to test hypotheses. The 
question of the hypotheses testing is : "At what significance level  p  
does the computed value of  d  determine the rejection of  the null 

hypothesis  )|(=)|( BXFBXF inin ?"  The  newly  introduced 

significance  level  p  is  often  referred  to  as  " p -value"  and  this 
working paper also uses this terminology.

Low value of p  means that even for – say – 1%, .01% or even values 

as low as 10010− %, we reject the null that the two CDFs are identical. 

High value of p  means that even for significance levels like 99.5% or 
99.9999% we cannot  reject  the  null.  If  p  equals  one,  we  cannot 
reject the null at any significance level (or, strictly speaking, we can 
reject the null at significance level 1).3

Results for LS model can be found in figures 2, 4 and 6. The non-
behavior  subset  B  is  defined  as  a  violation  of  Blanchard-Kahn 
condition (or – generally – any situation where steady state solution 
cannot  be  found).  The  remaining  part  of  the  domain  -  B  -  is 
behavioral. Solid lines in figures 2, 4 and 6 represent CDFs for non-
behavioral  B  subset,  dotted  lines  are  CDFs  for  behavioral  B  
subset. Each panel have a p-value computed above it.

Bi-dimensional projections are drawn in order to visualize the influence 
of parameters with high d . In general, a correlation coefficient ijρ  is 
computed  for  all  couples  of  parameters  and  those  that  exceed  (in 
absolute value) given threshold, are then drawn. Results for the LS 
model  are  in  figures  3,  5  and  7  with  a  threshold  set  to  0.3.  Bi-
dimensional  projections  of  parameters  iX  and  jX  where 

0.3|>| ijρ  are therefore drawn. A title of each panel is labeled cc, 

which stands for a correlation coefficient ijρ  of the two parameters.

1.2. Results for LS model
Summary numerical results for LS model are in table 3 and detailed 
numerical results are in table 4. Graphical results are in two kinds of 
schemes,  these  are  graphs  of  Smirnov  tests  2,  4  and  6  and  bi-
dimensional projections 3, 5 and 7. Smirnov test graphs are interpreted 

3 Computation  utilizes  Matlab  function  kstest2.  Extract  from  [Matlab 
documentation]:  h  =  kstest2(x1,x2)  performs  a  two-sample  Kolmogorov-
Smirnov test to compare the distributions of the values in the two data vectors 
x1 and x2. The null hypothesis is that x1 and x2 are from the same continuous 
distribution.  The  alternative  hypothesis  is  that  they  are  from  different 
continuous distributions. [h,p,ks2stat] = kstest2(...) also returns the p-value p 
and the test statistic ks2stat.
(http://www.mathworks.com/access/helpdesk/help/toolbox/stats/kstest2.html)

10



together with numerical results, bi-dimensional graphs are explained 
afterwards.

First experiment uses uniform sampling from prior ranges with default 
number of samples 2,048. Results for this setting are in the second 
row of table 3, second column of table 4, and figure 2. This graph with 
Smirnov tests looks similar to Ratto's result4. Both figures clearly depict 
that unacceptable behavior is driven by parameters 1ψ  and 3ψ . In 
another words, in cases of both parameters, the solid line is to the left 
from the dotted line so that rather smaller values of these parameters 
drive the unacceptable behavior. A more careful look reveals that the 
domain for unacceptable behavior is for both parameters from zero to 
one.

Second setting of stability mapping for LS model just adds some 8,000 
more samples. Results for Smirnov tests are in the third row of table 3, 
third column of table 4, and in figure 4 and are virtually the same as for 
the  smaller  sample.  However,  the  figure  shows  that  the  CDFs  are 
smoother,  which  is  due  to  the  larger  sample.  Another  obvious 
consequence of increasing the number of samples is an increase in 
the power of statistical tests. p -values of parameters with already low 
p -value  like  e.  g.  1ψ  and  3ψ  tend  even  closer  to  zero.  More 

concretely,  p -value  statistics  of  parameters  1ψ  and  2ψ  get 

approximately  five  times  closer  to  zero  ( 21343 102.4102.6 −− ⋅→⋅
 and 9820 101.4102.6 −− ⋅→⋅  respectively). On the other hand, p -
values that are already high tend even higher. Examples of parameters 

with  elevated  p -values  are  *π
ρ  ( 10.991→ ),  rr  (

0.9960.891→ ), or qρ  ( 0.9610.631→ ).

Third  setting  tries  to  draw priors  not  from uniform  distribution  (like 
Ratto's paper), but from prior distributions defined as in the LS paper5. 
The shape of the CDFs in figure 6 therefore changes, but the results 
are  similar.  However,  some  uninsignificant  differences  arise.  These 
concern parameters 3ψ  and τ : Smirnov d  statistic for 3ψ  drops 

from 0.61 to 0.28 and p -value of τ  jumps from 0.44 to 0.94. Also, 
results in last row of table 3 indicate that the part of domain attributed 
to indeterminacy is larger by almost 2 percentage points.

Bi-dimensional projection of the baseline setting (uniform priors, 2,048 
samples) plots 3 panels unlike Ratto's one. This is probably due to a 
differently chosen threshold, Ratto used 0.4 and I used 0.3. However, 
that  rules  out  just  the  third  panel  with  cc=0.31.  The  panel  with  a 
projection  of  parameters  k  and  τ  has  a  correlation  still  slightly 
above the Ratto's threshold 0.4. The occurrence of this panel can be 

4 [Ratto 2008a, p. 124].
5 [Lubik and Schorfheide 2003] and also [Ratto 2008a, p. 125].
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attributed  to  a  different  calibration  of  the  parameters,  especially 
parameter k  has quite different calibration6. Larger sample of 10,000 
draws (in fig. 5) leaves only one panel with a projection of parameters 

1ψ  and 3ψ . This result is in accordance with Ratto's paper. The dots 

in figures 3 and 5 form a triangle with sides [0,1]  on both parameters 

1ψ  and  3ψ .  The  correlation  of  the  parameters  is  approximately 

2

1− .  Because the dots represent non-behavior (more concretely – 

indeterminacy),  this  leads  to  the  result  that  behavior  requires 
1>31 ψψ + ,  which is by Ratto's paper called a "generalised Taylor 

principle". Third setting (prior distributions with 10,000 samples) makes 
figure  7  hardly  useful.  The  shape  is  similar  to  figure  5,  but  the 
borderlines are not  apparent.  However,  the correlation coefficient  is 
also cca -.5. Probably because the third setting with prior distributions 
offers less useful results in comparison with uniform priors, it  is not 
used in Ratto's paper.

This  analysis  doesn't  use  data,  so  the  results  are  just  a  matter  of 
model  relations  (equations)  and  parameter  calibration,  not  the  data 
itself.

6 [Ratto 2008a, p. 125]: .25=.5,= σµ , this study sets .4=2,= σµ .
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3. MAPPING THE FIT
1.1. Theory
Since DSGE models consist of a number of observed variables, which 
should fit the data as well as possible, mapping the fit may be a useful 
tool  to  learn  about  the  linkages  that  drive  the  fit  of  trajectories  of 
particular  variables  to  data.  Information  provided  by  the  results  of 
mapping the fit can be used to unveil possible trade-offs and maybe 
also amend model structure or calibrate parameters properly in order 
to increase the fit of variables of interest.

The procedure is carried out as follows:  

1. Structural parameters are sampled from posterior distribution, 
2. RMSE7 of  1-step-ahead  prediction  is  computed  for  each  of 

observed series, 

3. 10  %  of  lowest  RMSE  is  defined  as  behavioral  and  B  is 
defined  as  a  subset  of  parameter  values  producing  these 
behavioral results and 

4. the calculations results in a number of distributions )|( BXf ij  

that  represent  the  contribution  of  parameter  iX  to  best 

possible fit of j -th observed series. 

Plotting the distributions (or better the CDFs) is one step further to 
trace  possible  trade-offs.  A  trade-off  is  present,  when  at  least  two 
distributions differ  from posterior  distribution (denoted in  Figures  as 
base) and differ from each other.

1.2. Results for LS model
[Ratto  2008a,  p.  126]  lists  these  parameters  as  the  ones  bearing 

biggest  trade-offs:  ,,, 31 Rρψψ *,,,
yqk ρρα .  This  subsection 

compares and contrasts results obtained by [Ratto 2008a] and by this 
working paper.

In  [Ratto  2008a],  parameters  1ψ  and  3ψ  both  represent  similar 

trade-offs, albeit  a bit  smaller in volume in case of parameter  3ψ . 

Both parameters should be rather smaller in order to fit  inflation  π  
and rather larger in order to fit the change in nominal exchange rate 
e∆ . Realization of the LS model on Czech data tells a bit different 

story – see figure 9, panel one and three.  1ψ  and  3ψ  should be 
smaller  in  order  to  fit  inflation optimally  as in  Ratto's  realization on 
Canadian data, but the similarity with [Ratto 2008a] ends there. Both 
parameters fit the change in nominal exchange rate quite well in their 

7 Root mean square error.
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posterior  distribution;  there  will  be  no  gain  if  they  become  bigger 
(unlike  Ratto's  result).  Larger  value  of  1ψ  than  its  posterior 
distribution supports a better fit of output and interest rate. Results for 

3ψ  are however somewhat different: interest rate supports a bit lower 
value,  whereas  output  supports  somewhat  larger  value.  Figure  12 
contains the same information, with the difference that PDFs are drawn 
instead of CDFs.

Indications of trade-offs associated with parameter  Rρ  (rho_R) are 
similar  in  Canadian  and  Czech  realization  of  the  LS  model.  Both 
realizations suggest that  Rρ  should be lower in order to fit inflation 
better  and  higher  in  order  to  fit  interest  rate  better.  However,  the 
magnitude is different. A deviation of the parameter from its posterior 
distribution is higher in the Czech model in case of interest rate and 
lower in case of inflation: see figure 9, panel 4.

Parameter α  fits all variables rather well in both country realizations. 
Deviations are small and different in the two countries.

Parameter  k  is much more interesting. [Ratto 2008a] states that all 
observed series have a preference for a larger value of k . Posterior 
mode for  k  is somewhat less then .5 in [Ratto 2008a]. The Czech 
model placed posterior mode of k  to almost 2 and there is no longer 
a preference for bigger  k  from all  variables.  Inflation even prefers 
lower k  then posterior distribution. Change in terms of trade q∆  has 
a good fit at posterior distribution. Remaining three variables still prefer 
bigger value of k . For details see figure 10, panel 2.

Parameter qρ  has also interesting trade-offs. q∆  alone would imply 
a given value of the parameter 0.5, which is almost at posterior mode. 
[Ratto  2008a]  uses  different  calibration  so  that  it  encompasses 
different  quantitative  (but  not  qualitative)  result  of  an estimate 0.26. 
Other  variables  in  [Ratto  2008a]  fit  data  rather  well  with  qρ  at 
posterior  distribution.  However,  when  we  consider  Czech  data 
realization, it is no longer the case.  e∆  relatively strongly supports 
lower value of  the parameter and inflation prefers somewhat higher 
value of the parameter, too.

No other parameter causes conflicts between fit of the variables and 
that holds for both Canadian and Czech data realization.

Figures 13, 14 and 15 depict CDFs for log-prior, log-likelihood and log-
posterior.  Sampling  is  done  from prior  ranges  for  all  three  figues  . 
Dashed line stands for the density of the variable, that produces best 
10 % RMSE.  Solid  grey  line  then  draws  the  remaining part  of  the 
sample and solid line represents the full sample. Since these pictures 
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are  not  used  in  [Ratto  2008a],  the  interpretation  is  quite  an  open 
question.

The figures are drawn for observables, which are output growth y_obs, 
inflation pie_obs, interest rate R_obs, a change in the terms of trade dq 
and a change in the nominal exchange rate de. All figures have solid 
grey  and  solid  lines  almost  perfectly  overlapping.  This  is  a  mere 
consequence of a fact that 90 % of samples is almost the same as the 
full sample (100 %).

Variable dq has all three lines overlapping in all three figures: It might 
mean that the groups producing best portion of RMSE and the rest are 
virtually  the  same  values.  All  variables  except  dq  in  figure  13 
demonstrate  similar  behavior:  The  red  line  is  to  the  right  from the 
remaining two, which suggests that the best 10 % RMSE are obtained 
by  picking  rather  bigger  values.  However,  looking  at  the  other  two 
figures 14 and 15, the picture becomes upside down. Variables dq, de 
and pie_obs seem not  to  have preference towards  either  bigger  or 
smaller values. Remaining variables y_obs and R_obs seem to have 
opposite preference than in figure 13: The red line is to the left of the 
other  two,  which  should  indicate  that  the  best  10  %  RMSE  are 
obtained  with  rather  lower  values.  The  issue  with  these  "opposing 
preferences" might  also be in values of  the functions (and possibly 
used transformations). The documentation only mentions logarithmic 
transformation and there is a tenfold drop in values of the functions 
from log-prior to either log-likelihood or log-posterior. Tha values of the 
functions  in  figure  13  are  from  -300  to  -100,  whereas  values  of 
functions in figures 14 and 15 span from -3000 to -2000.

There are two more sets of similar pictures. Figure 16 shows similar 
results  when  sampling  from  multivariate  normal.  Finally,  figure  17 
shows similar results when using Metropolis posterior sample. Figure 
16 displays no major differences among dashed, solid grey and solid 
lines.  Only  log-likelihood  and  log-posterior  values  of  y_obs  and 
pie_obs seem to prefer slightly lower values. In other cases, the lines 
overlap. Again, there is a shift in values from log-prior to log-likelihood 
and log-posterior. Most values of log-priors are in the interval (0,10), 
whereas  log-likelihood  and  log-posteriors  span  approximately  from 
-530 to -495. Figure 17 is very similar to 16. The cdfs span on similar 
intervals  and  the  same observed  variables  tend  to  lower  values  to 
reach best 10 % RMSE. There is just one noticeable difference, the 
best 10 % of RMSE are obtained by rather lower values (than the rest 
of the sample) for e∆  for log-prior and log-posterior. Table 5 displays 
bi-dimensional projections from prior sample of the best 10 % RMSE 
for cases, when correlation between two parameters exceeds 0.3 in 
absolute value. The columns of the table represent various observable 
variables,  the rows represent  varying sample size.  Different  sample 
sizes are depicted for a reason: Larger sample depicts the shape of 
the correlogram better and it is therefore easier to read the patterns. 
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However,  varied  density  of  the  points  is  more  apparent  in  a 
correlogram  computed  on  a  smaller  sample.  The  initial  number  of 
samples  starts  at  2,048,  which  is  a  default  value.  Then  there  are 
sample sizes of 4,096 and 20,480, which is 2 and 10 times larger than 
the  original  sample.  Finally,  there  are  two  big  sets  of  samples 
containing 50,000 and 100,000 samples. According to the results in 
table 3, some 97 % values of the subset correspond to behavioral set. 
Consequently,  approximately  97  %  of  the  samples  pass  the  MCF 
procedure  and  are  used  to  calculate  the  correlations.  The  exact 
numbers  of  samples  used  for  calculation  of  the  correlograms  are 
1,989; 3,976; 19,855; 48,475 and 96,955.

Column 1, 3 and 4 have varying number of figures. This dissension in 
the count is caused by a correlation coefficient being near the given 
threshold,  |0.3| . At some sample size, the correlation coefficient is 
estimated  to  be  somewhat  larger  (an  the  figure  is  thus  drawn),  at 
another sample size it may not be the case and the figure is not drawn 
since the correlation coefficient is in absolute value smaller than 0.3.

There  are  three  different  couples  of  parameters  with  significant 
correlation for observable variable π  (inflation). These are 31vs.ψψ  

with  a  strong relationship,  *3vs.
π

ρψ  with  a  moderate  relationship 

and finally  αρ vs.*y  with a confusing relationship. Correlograms for 

31vs.ψψ  depict negative correlation, which means that the sum of 
the two coefficients must have certain value in order to reach the best 
10 % RMSE. The shape of the correlogram suggests, that the sum 

31 ψψ +  should be rather lower, approximately in interval (1;5). Note 

the white triangle "0,1,1", an area corresponding to 131 ≤+ψψ . This 
area produces non-behavior (indeterminacy)  as was concluded from 

figure  5  earlier.  Correlogram  for  *3vs.
π

ρψ  is  similar:  Values  of 

parameters  should  be  rather  smaller  with  an  approximate  rule 

1<
0.72

*3 π
ρψ + . The last observed correlation is for  αρ vs.*y  and it 

appeared  only  when  calculating  with  the  smallest  sample  of  2,048 
original  samples.  Because  the  shape  of  the  correlogram  is  also 
confusing, we may conclude that this results is an error stemming from 
a low number of samples or the correlation being in fact lower than 0.3 
in absolute terms.

Interest rate  R  has also three couples of parameters that have to 
meet certain conditions in order to reach the best  10 % RMSE. All 
three couples display negative correlation and all occur no matter the 

sample size. The first correlogram (from left) is for  *3vs.
π

ρψ . This 

couple occured also for a fit of  π  and the correlogram looks almost 
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the  same.  This  means,  that  meeting  the  approximate  rule 

1<
0.72

*3 π
ρψ +  ensures to reach the best 10 % RMSE for π  and R  

as  well.  Second  correlogram  is  for  kRvs.ρ .  This  correlogram 

indicates that a better fit of R  is obtained with rather larger values of 

the parameters with approximate rule 1>
30.8

kR +ρ
. Last correlogram 

for *vs.
yA ρρ  is quite weird. There seem to be three areas driven by 

different rules. One of them is along the line for  (0.75,1)=Aρ  no 

matter  the  value  of  *y
ρ .  Second  systematic  part  seem  to  be 

1>*yA ρρ +  and 1<*y
ρ . This pattern becomes more apparent with 

(very)  large  number  of  samples.  Last  "almost  systematic"  part  is 
somewhere along  0.2=Aρ  but there are only a few points, which 
brings us to another point to make. In this case, the need for various 
sample sizes becomes apparent. There are three (almost?) systematic 

parts in correlograms for *vs.
yA ρρ , but the power of the systematic 

parts is very different. Correlograms for smaller sample size show that 
the first mentioned area along  (0.75,1)=Aρ  is much more dense 

than area along  0.2=Aρ , which is visible only in correlograms that 
used very high number of samples.

There are two different correlograms for output y . Both show positive 
correlation  between  parameters  and  both  are  bit  hard  to  interpret. 
Correlation between  k  and  τ  occurs only in two (of five) sample 
sizes. It is probably on the borderline of 0.3. Correlograms for ταvs.  
converge to correlation 0.5, which would (with the correlogram itself) 

indicate a relationship of  approximately  
2.5

=
0.8

τα
.  Such "rule"  is 

very approximate and not very apparent in the correlogram (for any 
number of samples).

Last  observable  variable  with  significant  correlations  is  a  rate  of 

change of nominal exchange rate e∆ . Correlogram for *vs.
y

ρα  is 

clearly  an  error  due  to  small  sample.  Remaining  correlograms  for 

qραvs.  indicate that αρ <0.5−q .
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4. HIGH DIMENSIONAL MODEL 
REPRESENTATION / REDUCED FORM 
MAPPING

1.1. Theory
Consider a DSGE model written as 

0,=)};,,,({ 11 Xttttt uyyygE −+

where  ty  is  a vector  of  endogenous variables,  tu  is  a vector  of 

exogenous shocks and  ),,(= 1 kXX X  is the array of structural 

parameters. Let  Y  be a generic output (there will be an example of 
what Y  might actually be). A non-linear relationship 

),,(= 1 kXXfY 

then holds. With the help of High Dimensional Model Representation 
(hereafter  HDMR),  this  non-linear  (unknown)  relationship  can 
expressed as a finite decomposition of the function f : 

 +++ ∑∑∑ ij
iji

i
i

k fffXXf
>

01 =),,(

The HDMR terms are 

)(=0 YEf

0)|(= fXYEf ii −

0)()(),|(= fXfXfXXYEf jijiij −−−

where  ),(),( jiijii XXffXff ≡≡  and  so  on.  The  if s  are 

called  the  main  effects  and  ijf s  are  called  the  second  order 
interaction effects and so on. The decomposition terms tell how much 

Y  moves around its mean value 0f  as a relevant function. Notation 

of  variance  corresponds to  ii VfV =)(  and  VYV =)( ,  the  first 

order sensitivity index is VVS ii /= , second order VVS ijij /=  and 
so on.

A scalar measure can be constructed to calculate relative importance 
of iX  on the variance of Y .

Exemplary application to DSGE model is as follows: Let the reduced 
form is 

ttt BuTyy +−1=
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and  the  generic  output  Y  will  be  entries  in  the  transition  matrix 
),,( 1 kXXT   or the matrix ),,( 1 kXXB  .

1.2. Results for LS model
Figure  18  depicts  the  usefulness  of  a  )(log Y−  transformation. 
Panels 1 and 3 depict histograms of the reduced form coefficient  Y  
itself. The values are slightly negative and most of them are little less 
than  zero.  The  histograms  therefore  form  one  very  narrow  spike 
skewed a little to negative values. Such shape seems inconvenient for 
further analysis, since there is little (if anything) we can see from such 
histograms.8 The  )(log Y−  transformation of the sample results in 
nicely shaped histograms as in Panel 2 and 4. Ratto's paper therefore 
uses this transformation throughout the HDMR analysis.9

Figures 19 and 20 depict first order HDMR for the two chosen reduced 
form coefficients. There are two variants for each of the coefficient: Y  
without  transformation  (left  panels)  and  Y  in  transformation 

)(log Y−  (right panels).

Figure 19 analyzes the influences that parameters of the model have 
on the reduced form structural coefficient )vs.(= 1−tt RY π , with and 
without  logarithmic transformation.  Solid  lines that  are  inside dotted 
intervals mean that if  term has zero value of and the corresponding 

parameter can have no influence on  Y . Lines that cross the dotted 

lines  represent  if s  that  may  have  an  influence  on  Y .  The 

magnitude of the influence is judged by sensitivity index  iS .  Index 

iS  expresses a fraction of variation of Y  that is explained by i -th 
parameter.

Searching for non-zero  iS s in the left panel reveals that there are 

three  of  them.  These  are10 .04,=.67,=
1ψρ SS

R  and  .01=kS , 

which totals to explanation of 72 % of total variance of Y . Right panel 
offers  similar  situation,  yet  somewhat  different: 

.02=.07,=.89,=
1 kR

SSS ψρ  and  .01=
3ψS , which sums to 99 % 

of total variance of )(log Y− . The latter approach gives very similar 
results,  but  scores  better.  So  it's  another  reason  why  to  use  the 
logarithmic transformation.
8 There  are  other  inconvenient  results  if  we  don't  use  any  suitable 
transformation. Some of them are depicted in Figure 22.
9 There are also other transformations, all of them are automated in Ratto's 
application and all of them lead to a nicely-shaped histogram.
10 A compact notation shall be used: Sensitivity index iS  for parameter 1ψ  

shall be 1ψS  and so on... 
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An analysis of the signs is conducted before passing to the next case. 
Basic questions are: What are the linkages between the two panels? 
What  do  the  sings  tell  us  in  the  right  panel?  By  investigating 
statistically  significant  if s  in  both  panels  one  observes  that  they 

change the sign of their slope. In another words, increasing  if s in 
the left panel are decreasing in the right one and vice versa. This is 
due to the minus sign in the logarithmic transformation )(log Y− . In 

right panel, larger values of  Rρ  and  k  and smaller values of  1ψ  

and  3ψ  imply  larger  values  of  )(log Y−  transformation  and 

therefore small (or – in another words – large negative) values of Y .

Figure 20 is  constructed in the same way as figure  19 except  it  is 
calculated for  reduced coefficient  )vs.(= ,tRt eY π .  Left  panel  has 
four  parameters  with  nonzero  sensitivity  indices,  these  are 

.01=.07,=.64,=
31 ψψρ SSS

R  and  .01=kS .  These  parameters 

explain 73 % of variation of Y  around its mean. Right panel presents 
the results for )(log Y−  transformation with these nonzero sensitivity 

indices:  .01=.07,=.17,=.66,=
21 ψψρ SSSS kR  and  .01=

3ψS . 

Explanation of variation of )(log Y−  is in this case 92 %.

To extract  some information more easily,  Ratto's G/LSA offers also 
graphs  of  ordering  of  sensitivity  indices  for  each  reduced  form 
coefficient. Figure 21 displays the values of sensitivity indices as bars 
and sorts it  from the highest  to the lowest.  This information is also 
present in figures 19 and 20, but this figuration is more suitable for 
detection of the most important parameters, especially when there are 
many  reduced  form  coefficients  to  investigate.  First  two  panels 
represent  Y ,  second two panels represent  )(log Y− .  Looking at 
the  similarities  of  the  two  groups,  we  can  yet  again  conclude  that 

)(log Y−  transformation doesn't bring in any unwanted effects.

Explanation capability  of  figure 22 isn't  completely clear. There isn't 
any mention of it  in the documentation of the G/LSA tool nor in the 
literature.  The  title  of  the  graph  says  it  is  a  fit  of  a  reduced  form 
coefficient.  However,  it  doesn't  say to what variable is the actual fit 
observed.  Another  question  is11,  what  is  on  the  vertical  axis. 
Histograms in figure 18 suggest that horizontal axis depicts the values 
of the reduced form coefficient. Green points should probably form a 
regression line through the blue points.

11 It may be the same question as was suggested in the previous sentence.
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Figure 23 depicts boxplots12 of sensitivity indices. Right panels show 
results only for a given (small) set of relations. Left panels show results 
for all possible relations. This comparison is showed, because the right 
panels are default results of the analysis, although hardly interpretable. 
By  choosing  different  variables,  an  analyst  can  change  the  picture 
almost  arbitrarily.  On  the  other  hand,  graphs  calculated  from  all 
possible relations encompass all sensitivity indices and an analyst can 
therefore draw robust conclusions. Left panels again show that using 

)(log Y−  transformation doesn't make much difference. Panel 1 is 
used for the interpretation of the results itself.

According to panel 1 of figure 23, the most influential parameters are 
kR ,,1 ρψ  and  τ .  The  least  influential  parameters  seem  to  be 

rr,2ψ  and  *y
ρ .  Parameter  1ψ  has  highest  median,  but  upper 

quartile  and  upper  whisker  isn't  much  higher.  Such  characteristics 
could mean that 1ψ  is important for many reduced form coefficients, 

but is rarely very important. Parameter Rρ  has highest upper quartile 

and upper whisker, but it has lower median than 1ψ . This backward-
looking parameter of the monetary rule is therefore quite important for 
many reduced form coefficients and very important for some, too. On 
the  other  hand,  lower  median  would  suggest  that  the  number  of 
reduced form coefficients for which is  Rρ  important is lower than in 

the case of 1ψ . Parameters k  and τ  are even less important than 
the two just discussed. Both have lower values of median and upper 
quartile. Upper whisker is somewhat lower, too.

Both  parameters  2ψ  and  rr  have  all  sensitivity  indices  virtually 
zero, which should suggest that these parameters are unimportant for 

all possible reduced form coefficients. Boxplots of *,,,
yAq ρρρα  and 

*π
ρ  represent rather peculiar results. All  of these parameters have 

median and upper quartile virtually zero, but have some high outliers. 
Such results  mean that  these parameters are  unimportant  for  most 
reduced form coefficients, but have important (in case of  α ) or very 
important (in case of the remaining four parameters) influence on some 
reduced form parameters.

12 Extract from [Matlab documentation]: boxplot(X) produces a box and whisker 
plot for each column of the matrix X. The box has lines at the lower quartile, 
median, and upper quartile values. Whiskers extend from each end of the box 
to the adjacent values in the data; by default, the most extreme values within 
1.5 times the interquartile range from the ends of the box. Outliers are data 
with values beyond the ends of the whiskers. Outliers are displayed with a red 
+ sign.
(http://www.mathworks.com/access/helpdesk/help/toolbox/stats/boxplot.html)
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5. MORRIS SAMPLING / SCREENING
1.1. Theory
This  subsection  explains  the  concept  of  elementary  effects  for 
sensitivity analysis.  Contents of this subsection is based on [Saltelli 
2008, part 3.2–3.4, pages 110–121].

Elementary effect is defined as 

,
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where  Y  is  output,  kiX i ,1,=,   are  inputs.  ∆ is  a  value  in 
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form the grid for sampling.

Various realizations of iEE  form a distribution iF  so that ii FEE : . 
A  straightforward  transformation  can  also  be  defined  so  that 

ii GEE :|| . Three important sensitivity indices can be computed from 

distributions  iF  and  iG .  These are  j
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iEE  is  an  elementary  effect  relative  to 

factor i  computed along trajectory j  and r  is a number of selected 
trajectories13.

The  theory  about  these  three  measures  is  that  µ  is  an  average 
elementary effect. The higher it is, the more important the parameter 
is. However, since the elementary effects can be positive and negative 
as  well,  the  effects  can  cancel  out  while  summing  up  to  µ . 

Consequently, low value of  iµ  doesn't mean that  i -th parameter is 
unimportant.  This  lack  of  power  is  also  a  reason  to  construct 
alternative  measure  *µ .  This  measure  calculates  with  absolute 
values  of  elementary  effects,  so  it  doesn't  matter  if  the elementary 
effects  are  positive  or  negative.  Some  extra  information  can  be 
acquired  by comparing  µ  and  *µ .  Some combinations  that  may 
occur are the following:  

• µ  small, *µ  small: Easy case, the parameter in question is not 
influential. 

13 This number is selected from a much larger set of trajectories M  in a way 
that there is as high spread among them as possible. The sense in selecting 
r  trajectories from the set  M  is that it dramatically reduces computation 

costs while the r  trajectories may describe the whole set M  quite well.

22



• µ  big positive, *µ  big positive: Also a clear case, the parameter 
is influential, elementary effects are positive. 

• µ  big  negative,  *µ  big  positive:  The parameter  is  influential, 
elementary effects are negative. 

• µ  small,  *µ  big  positive:  Special  case.  The  parameter  is 
influential,  elementary effects are  positive  and negative  as well. 
The  distribution  F  is  probably  not  unimodal  (with  peaks  in 
positive and negative domain). Since the elementary effects are far 
from one another, the measure  σ  will probably also be high. In 
this  case,  interpreting  µ  alone results in the so-called Type II 
error – failing to identify an influential factor. 

Measure σ  represents variation around µ  and may also detect non-
linear or some mutual relationship. High σ  generally means that the 
parameter  has  quite  different  influences  in  different  settings,  which 
may indicate dependence on other parameters or other relationships 
altogether.

1.2. Results for LS model
Routines generating figure 24 needed some reprogramming.  Panels 
1–3  are  flawed  in  some  way  and  are  depicted  in  order  to  easily 
visualize  the  reprogramming  steps.  Further  analysis  of  results 
concentrates only  on panels  4–6.  Panel  4  depicts  boxplots  of  iσ , 

panel 5 depicts boxplots of iµ  and last panel 6 depicts boxplots of the 

most  important  measure  of  all  three,  *
iµ .  All  distributions  are 

normalized to 1 so that relative connections can be observed.

Last (sixth) panel of figure 24 depicts similar information as figure 23, 
with the difference in sampling mechanism. The former uses Morris 
sampling,  the  latter  uses  sampling  from  prior  distributions.  Strictly 
speaking, there is also a difference in what is actually displayed. Figure 
24 depicts boxplots of measures based on elementary effects  iEE , 

whereas  figure  23  depicts  boxplots  of  sensitivity  indices  iS . 
Nevertheless, these sensitivity measures are closely tied. The patterns 

are similar in both figures14, but the values of *
iµ s are bigger than the 

values of sensitivity indices  iS . Except for bigger values, there are 
also  other  remarkable  similarities  and  differences.  The  biggest 
difference may be observed for parameter  α , which has sensitivity 
indices virtually zero (except for 5 outliers), but represent highest upper 

quartile for *
iµ s. With the exception of parameter α , most important 

parameters in both figures are  kR ,,, 31 ρψψ  and  τ . Very similar 

14 Meaning panel 6 in figure 24 and panel 1 or 3 in figure 23.

23



results in both figures 23 and 24 are for variables *,,,
yAqrr ρρρ  and 

*π
ρ .

The differences in figures 23 and 24 can be divided into two groups. 
One group displays an even overall shift in values, which is due to the 
different  calculation  of  sensitivity  measures.  Another  group displays 
uneven  shifts  in  values,  especially  visible  for  parameter  α .  These 
disproportions  can  be  probably  attributed  to  a  different  sampling 
mechanism. To draw some final conclusion, results in panel 6 of figure 
24 suggest that parameter  2ψ  is quite unimportant for any reduced 

form coefficient and rr  is completely unimportant.

Panel  5  depicts  boxplots  of  µ s.  All  parameters  have  elementary 
effects with both positive and negative signs. Two parameters tend to 
positive sign of elementary effects, these are 3ψ  and α . Parameter 

3ψ  reaches negative values only with its whisker, whereas α  has its 

lower whisker at -1. Panel 4 depicts boxplots of σ s. This panel looks 

very similar to panel 6 with *µ s so that the higher the influence of the 
parameter, the higher the variance of the parameter. This observation 
is violated mainly by  τ , which spans in panel 5 from -1 to 1. Such 
variance  is  maximal  attainable,  so  it's  the  probable  cause  of  its 
unusually  high variance in panel 4.  It  is  also worth  mentioning that 
since most µ s are around zero, trying to interpret it without the use of 

*µ s would probably lead to the Type II error explained above.

Parameters that are unimportant for any possible relation in the model 
may be hardly identifiable. Figure 25 is displayed in order to allow for 
an analysis of identifiability.  Figure 24 suggests that parameter  rr  

should  be  hardly  identifiable  and  parameter  2ψ  may  be  hardly 

identifiable. Figure 25 reveals that both parameters rr  and 2ψ  have 
prior  and  posterior  distribution  almost  perfectly  overlapping,  which 
suggests  that  these  parameters  are  either  unidentifiable  or  were 
calibrated.  The  same  overlapping  of  distributions  is  also  visible  for 

parameter k , but figure 24 shows that *
kµ s are influential. Figure 23 

shows in panel 1 and 3 that kS s exceeds 0.5, which means that k  
explains 50 % of variability of at least some reduced form coefficient. 
These  facts  support  a  hypothesis  that  the  observation  of  lack  of 
identifiability made in figures 24 and 25 is not equivalent. The direction 
of the implications is rather from figure 24 to 25. In other words, the 
lack  of  identifiability  observed  in  figure  25  doesn't  mean  that  the 
parameter in question is uninfluential for reduced form coefficients.

Figure  26  compares  two  different  approaches  to  show  what 
parameters are important for a given reduced form coefficient. First two 
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groups of graphs was computed the same way as results in figure 21, 
but the results are for π  vs. all lagged endogenous variables and all 
exogenous  shocks.  Second  two  groups  of  pictures  are  similar,  but 
these are computed as a screening with Morris sampling. Again, as in 
comparison of figures 23 and 24, values calculated by Morris sampling 
are higher. However, there are some other differences that cannot be 
attributed to this cause. Most of these differences are again driven by 
α  as  it  has  in  the  previous  analysis.  Parameter  α  is  usually 
uninfluential in calculations from prior distributions, yet very influential 
when sampling with Morris method. This is the case for reduced form 

coefficients  )vs.( *
1−tt yπ ,  )vs.( 1−tt Aπ ,  )vs.(

,* tyt eπ  and 

)vs.( ,tAt eπ . Figure 26 offers another peculiar difference, which is 

visible  in  graphs  for  reduced  form  coefficients  )vs.( *
1−tt yπ  and 

)vs.(
,* tyt eπ .  Sampling  from prior  distributions  results  in  just  one 

important parameter τ , whereas sampling with Morris method results 
in 3–4 very important parameters (including τ  and α ).
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CONCLUSION
This  working  paper  investigated  sensitivity  properties  of  [Lubik  and 
Schorfheide  2003]  model,  which  is  a  small-scale  structural  general 
equilibrium model of a small open economy. The model is defined by 
equations  (1)–(8).  This  case  study  uses  quarterly  Czech  data  from 
1996 to 2008.

Stability  mapping  analysis  results  in  a  couple  of  useful  outcomes. 
Preferable type of sampling seems to be from multivariate normal and 
the size of the sample doesn't have to be very large. Results for LS 
model show that there is only one concern for stability and that is the 
so-called  generalized  Taylor  principle  1>31 ψψ + .  If  this  formula 
doesn't hold, Blanchard Kahn condition is violated and the solution of 
the rational expectations model couldn't be found.

Mapping the fit led to several interesting results. For some parameters 
(like k ), this working paper's calibration of the model seems to have 
more favorable results, because there are less trade-offs for fit.  For 
some other parameters (like qρ ), results of [Ratto 2008a] seem to be 
better.  Bi-dimensional  projections  of  couples  of  parameters  for 
attaining the best 10 % RMSE offers a different point of view on the 
characteristics  of  the  best  possible  fit  of  trajectories  of  observable 
variables. Except for finding several relations that should hold in order 
to reach the best 10 % RMSE, this part of analysis also shows the 
importance of  using several  sample sizes,  from the smallest  to the 
largest.

Reduced  form  mapping  elaborates  influences  of  parameters  to 
connections of two variables (or – in another words – reduced form 
coefficients). Subsection 4.2 also makes a successful search for most 
influential  parameters  (which  are  kR ,,1 ρψ  and  τ )  and  least 

influential parameters (which are rr,2ψ  and *y
ρ ).

Results about the (non)influence of parameters are compared to Morris 
sampling  results.  Outputs  of  these  two  approaches  seem  to  be 
compatible.  Final  part  of  section  5  deals  with  the  ability  to  identify 
parameters. One of the conclusions is that parameters  rr  and 2ψ  
are either unidentifiable or were calibrated.

This working paper made a thorough sensitivity analysis of [Lubik and 
Schorfheide 2003]  model  with  M.  Ratto's  G/LSA tool.  This  study is 
much more complex that the original article [Ratto 2008a], it explains 
some aspects  of  G/LSA in  greater  detail  and  it  shows  much more 
results than [Ratto 2008a] did. Since this work set a benchmark, the 
next  logical  step  of  research  is  to  study  different  models  and/or 
different economies.
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APPENDIX

6. TABLES
Table  1: Description of variables and parameters. WP n. = working 
paper notation, M n. = Matlab notation

WP n. M n. Description Note/Group 
y  y real aggregate 

output 
 

π  pie CPI inflation rate  

R  R nominal interest 
rate 

 

q  – terms of trade  
q∆  dq change in terms of 

trade 
observable variable

*y  
y_s exogenous world 

output 
 

*π  
pie_s world inflation 

shock 
 

e  – nominal exchange 
rate 

 

e∆  de change in nominal 
exchange rate 

observable variable

z  A growth rate of the 
world technology 
progress 

 

y  – potential output *1
)(2= tt yy

τ
ταα −−−

obsy  
y_obs growth of real 

output 
ttttobs zyyy +− −1, =

, observable variable 

obsR  
R_obs annualized 

nominal interest 
rate 

RRobs 4= , 
observable variable 

obsπ  
pie_obs annualized 

inflation 
ππ 4=obs  observable 

variable 
α  alpha import share 1<<0 α  
τ  tau inverse elasticity of 

intertemporal 
substitution 

0>
1

τ  

k  k composite 
parameter 

β – (subjective) 
discount factor 400

rr

=
−
eβ  
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rr  rr steady state real 
interest rate 

rr )(log400= β⋅−  

Rρ  
rho_R interest rate 

smoothing term 
1<<0 Rρ  

1ψ  
psi1 policy coefficient 0>1ψ  

2ψ  
psi2 policy coefficient 0>2ψ  

3ψ  
psi3 policy coefficient 0>3ψ  

qρ
 

rho_q AR1 coefficient 

*y
ρ

 
rho_ys AR1 coefficient 

*π
ρ

 
rho_pies AR1 coefficient 

zρ  
rho_A AR1 coefficient 

Table  2: Data set and its denotation

Time series Symbol 
Growth  of  real  GDP  per  working  person 
(demeaned) 

y_obs 

Inflation (annualized, demeaned) pie_obs 

Nominal p. a. interest rate (demeaned) R_obs 

Exchange rate change (demeaned) de 

Terms of trade change (demeaned) dq 

Table  3: Summary results of stability mapping for different samples

Priors Size of 
sample 

Stable share Indeterminacy 
share 

Uniform priors 2,048 97.1 % 2.88 % 
Uniform priors 10,000 96.9 % 3.06 % 
Prior 
distributions 

10,000 95.1 % 4.9 % 
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Table  4: Detailed results of stability mapping for different samples

Uniform prior 
2,048 samples 

Uniform prior 
10,000 samples 

Prior distributions 
10,000 samples 

Paramete
r 

d  p -
value 

d  p -
value 

d  p -
value 

1ψ  
0.9120 2.62e-

043 
0.9020 2.36e-

213 
0.9320 0 

2ψ  
0.0486 0.999 0.0192 1 0.0128 1 

3ψ  
0.6220 2.37e-

020 
0.6130 1.35e-

098
0.2780 5.58e-

032 

Rρ  
0.0312 1 0.0159 1 0.0141 1 

α  0.0537 0.995 0.0159 1 0.0150 1

rr  0.0782 0.861 0.0237 0.996 0.0194 0.994 

k  0.0821 0.818 0.0275 0.977 0.0166 0.999 

τ  0.0872 0.757 0.0498 0.443 0.0246 0.938 

qρ
 

0.0971 0.631 0.0291 0.961 0.0127 1 

Aρ  
0.0412 1 0.0160 1 0.0152 1 

*y
ρ

 
0.0629 0.973 0.0215 0.999 0.0168 0.999 

*π
ρ

 
0.0565 0.991 0.0182 1 0.0105 1 
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Table  5: Bi-dimensional projection for best 10 % RMSE. Prior sample. 
Sampled  uniformly  from  prior  ranges.  The  size  of  the  sample  is 
approximately 2, 4, 20, 50, and 100 thousands, respectively. 

obsπ obsR obsy e∆
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7. FIGURES
Figure  1: The data (observable variables). Time notation: 1996.25 is 
the first quarter of 1996 and 1997.00 is the last quarter of 1996.
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Figure  2: Smirnov test for stability analysis. Sample drawn uniformly 
from  prior  ranges,  2,048  samples.  Solid  lines  are  CDFs  for  non-
behavior  set  )|( BXF in ,  dotted  lines  are  CDFs  for  behavior  set 

)|( BXF in .
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Figure  3: Bi-dimensional projection of parameters driving unaccept-
able  behavior.  Sample  drawn  uniformly  from  prior  ranges,  2,048 
samples.

Figure  4: Smirnov test for stability analysis. Sample drawn uniformly 
from prior  ranges,  10,000  samples.  Solid  lines  are  CDFs  for  non-
behavior  set  )|( BXF in ,  dotted  lines  are  CDFs  for  behavior  set 

)|( BXF in .
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Figure  5: Bi-dimensional projection of parameters driving unaccept-
able  behavior.  Sample  drawn  uniformly  from  prior  ranges,  10,000 
samples

Figure  6: Smirnov test for stability analysis. Sample drawn from prior 
distributions, 10,000 samples. Solid lines are CDFs for non-behavior 
set )|( BXF in , dotted lines are CDFs for behavior set )|( BXF in .
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Figure  7: Bi-dimensional projection of parameters driving unaccept-
able behavior. Sample drawn from prior distributions, 10,000 samples.
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Figure   8:  Cumulative  posterior  distributions  (base)  and  the 
distributions of  the filtered samples corresponding to the best  fit  for 
each  singular  observed  series.  Grey  vertical  lines  denote  posterior 
mode. (1 of 4)
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Figure   9:  Cumulative  posterior  distributions  (base)  and  the 
distributions of  the filtered samples corresponding to the best  fit  for 
each  singular  observed  series.  Grey  vertical  lines  denote  posterior 
mode. (2 of 4)
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Figure   10:  Cumulative  posterior  distributions  (base)  and  the 
distributions of  the filtered samples corresponding to the best  fit  for 
each  singular  observed  series.  Grey  vertical  lines  denote  posterior 
mode. (3 of 4)
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Figure   11:  Cumulative  posterior  distributions  (base)  and  the 
distributions of  the filtered samples corresponding to the best  fit  for 
each  singular  observed  series.  Grey  vertical  lines  denote  posterior 
mode. (4 of 4)
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Figure  12: Posterior distributions (base) and the distributions of the 
filtered  samples  corresponding  to  the  best  fit  for  each  singular 
observed  series.  Grey  vertical  lines  denote  posterior  mode. 
Corresponds to Figure 9
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Figure  13: CDFs of the log-prior: dashed: best 10 % RMSE, solid grey: 
rest of the sample, solid: full sample. Sampling from prior ranges.
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Figure  14: CDFs of the log-likelihood: dashed: best 10 % RMSE, solid 
grey: rest of the sample, solid: full sample. Sampling from prior ranges.
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Figure  15: CDFs of the log-posterior: dashed: best 10 % RMSE, solid 
grey: rest of the sample, solid: full sample. Sampling from prior ranges.
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Figure   16:  CDFs  of  the  log-prior,  log-likelihood  and  log-posterior: 
dashed: best 10 % RMSE, solid grey:  rest of the sample, solid: full 
sample. Sampling from multivariate normal.
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Figure   17:  CDFs  of  the  log-prior,  log-likelihood  and  log-posterior: 
dashed: best 10 % RMSE, solid grey:  rest of the sample, solid: full 
sample. Using Metropolis posterior sample.
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Figure   18:  Histograms  of  the  MC  sample  of  the  reduced  form 
coefficient  )vs.(= 1−tt RY π  (Panel  1–2)  and  )vs.(= ,tRt eY π  

(Panel  3–4).  Panels  1  and  3:  actual  values  Y ;  panels  2  and  4: 
)(log Y− . Ratto's Figs. 12 and 13
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Figure  19: HDMR of the reduced form coefficient  )vs.(= 1−tt RY π  

in  the  )(log Y−  transformation  (right  panel)  and  without 

transformation (left panel). Solid line: if  terms, dotted line: 99.9%  

confidence bounds.  )()/(= YVfVS ii  is a sensitivity index.  Right 
panel is Ratto's Fig. 14.
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Figure  20: HDMR of the reduced form coefficient )vs.(= ,tRt eY π  in 

the )(log Y−  transformation (right panel) and without transformation 

(left  panel).  Solid  line:  if  terms,  dotted line:  99.9%  confidence 

bounds.  )()/(= YVfVS ii  is  a  sensitivity  index.  Right  panel  is 
Ratto's Fig. 15.
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Figure   21:  Ordering  of  sensitivity  indices.  Computation  of  tπ  vs. 

1−tR  and  tRe , .  First  two  panels  show  results  with  utilizing  the 
)(log Y−  transformation,  third  and  fourth  panels  show  results 

without transformation.

Figure   22:  Fit  of  the  reduced  form  coefficient  )vs.(= 1−tt RY π  

(panel 1 and 2) and  )vs.(= ,tRt eY π  (panel 2 and 3) with (panel 2 

and 4) and without (panel 1 and 3) )(log Y−  transformation.

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
-20

-15

-10

-5

0

5
pie vs. R fit

-7 -6 -5 -4 -3 -2 -1 0 1 2 3
-7

-6

-5

-4

-3

-2

-1

0

1

2

3
pie vs. R fit

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
-20

-15

-10

-5

0

5

pie vs. eR fit

-12 -10 -8 -6 -4 -2 0 2 4
-12

-10

-8

-6

-4

-2

0

2

4

pie vs. eR fit

Figure  23: Boxplots of sensitivity indices. Left panels: All endogenous 
variables vs. all exogenous and all lagged endogenous. Right panels: 

tπ  vs. tqe ,  and vs. 1−∆ tq . First row of panels is with )(log Y−  
transformation and second row is without a transformation.
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Figure   24:  iµ  and  iσ  boxplots  computed  from distribution  iF  

where  ii FEE : .  Morris  sampling.  First  two  panels  computed  by 
original  G/LSA application.  Second two panels are a result  of  a re-
programming by Jan Čapek. Panel 5 is once again re-programmed to 

normalize to ||max iµ . Panel 6 is *
iµ  originally computed by G/LSA.
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Figure  25: Prior (grey lines) and posterior (black lines) distributions of 
the parameters with posterior mode (green dashed lines).
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Figure  26:  Comparison of  ordering of sensitivity indices. There are 
four groups of graphs, each containing five graphs: First two groups 
show  results  for  sampling  from  prior  distributions,  third  and  fourth 
group  show  results  for  Morris  sampling.  Left  group  always  shows 
results for reduced form coefficients of π  against lagged endogenous 
variables,  left  group  always  shows  results  for  for  reduced  form 
coefficients of π  against exogenous shocks.
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