
Platforma průmyslové spolupráce

CZ.1.07/2.4.00/17.0041

Název

Logging Statements Rewrite Tool for Java Language

Popis a využití

• best practice pro tvorbu logovacích zpráv

• výuka: pokročilá Java

Jazyk textu

• anglický

Autor (autoři)

• Michal Tóth

Oficiální stránka projektu:

• http://lasaris.fi.muni.cz/pps

Dostupnost výukových materiálů a nástrojů online:

• http://lasaris.fi.muni.cz/pps/study-materials-and-tools

http://lasaris.fi.muni.cz/pps
http://lasaris.fi.muni.cz/pps/study-materials-and-tools

Contents

1 Introduction . 5
2 Logging systems . 7

2.1 Java logging systems . 8
2.1.1 Java Logging API . 8
2.1.2 Apache Commons Logging 10
2.1.3 Apache Log4j . 12
2.1.4 Logback Project . 13
2.1.5 Apache log4j 2 . 14
2.1.6 Simple Logging Facade for Java 15

2.2 Diagnostic and Audit logging . 17
2.3 Structured logging as opposed to natural language logging 18

2.3.1 Common Event Expression 19
2.4 New Generation Monitoring Logger 23

2.4.1 Overview of NGMON Logger 23
2.4.2 NGMON’s logging system . 25

2.5 Summary of various logging systems 28
3 Overview of the tools, used for implementation 29

3.1 Used Tools . 29
3.1.1 Git . 29
3.1.2 Sublime Text . 29
3.1.3 IntelliJ IDEA . 30
3.1.4 Apache Maven . 30

3.2 Language processing tool - ANTLR 32
3.3 Chosen application - Apache Hadoop 32

4 Implementation of changing logging system 34
4.1 Naïve approach using structured text 35
4.2 Python prototyping application . 37
4.3 Pluggable annotation processor and Java Compiler API 38

4.3.1 Pluggable Annotation Processing API - JSR 269 38
4.3.2 A short introduction to Java compilation process 39
4.3.3 Outcome of experimenting with Pluggable Annotation Processor 40

4.4 Approach using ANTLR language tool 40
4.4.1 How ANTLR works . 41
4.4.2 Parse tree . 42
4.4.3 Abstract syntax tree . 44
4.4.4 Walking the tree . 45
4.4.5 LogTranslator project . 47

1

5 Testing LogTranslator with Apache Hadoop 52
5.1 Incorporating NGMON logging system into project 52
5.2 Applying LogTranslator to Apache Hadoop project 52
5.3 Performance testing of translated application 54

6 Conclusion . 59
A Supplement . 64

A.1 Appendix A . 64
A.2 Appendix B . 67

2

1 Introduction

Nowadays technology era full of information, there is always an urgent need to col-
lect correct information in the shortest possible time. Similar tendency applies to
software applications, as well. We want to know what has happened at the moment
X and why part Y has failed. That is why applications during their runtime generate
some kind of control information about their past and current state, and what have
they done, or what are they going to do in their next steps. This information is
generally called logging messages or events.

These events have been part of our work since the beginning okof creation of
computer programs. Sometimes they are misused in a form of a quick substitution
for debuggers. It is always a great feeling, when you see and you know, what exactly
your application is doing at the moment, as well as how it deals with planned or
unplanned situations. On the other hand, application can generate a lot of redundant
information, which is not needed at the moment. Therefore we have to move them
into some kind of buckets and prioritize them. These priorities are mostly knows as
levels. This might seem to be a good solution, yet there are still problems with a
lot of finding and searching for exact thing, which can be metaphorically compared
with a looking for a needle in haystack. For people, log information about time and
circumstances of the events, expressed by means of natural language, sentences, has
always been satisfying. However, for searching in it by computers, it was a very hard
task to do.

In situations, when one company had well-structured natural language logs of
their product and another company had them structured as well, yet in a differ-
ent way, cooperation between two products of the above mentioned enterprises was
highly complicated. In this case, it becomes impossible for both products to process
logs simultaneously. That is the reason, why structured logging came in eventually.
It stresses the importance of readability of log information for computer, rather then
for humans. Natural language logs are generalized to the most vital information and
the rest is discarded. Also, the need for cloud based logging system is alarming as
well, because of excessive exchange of redundant information and overflowing of net-
works with unusable data.

This is when the NGMON Logger, a structured logging framework appears and
offers a solution. Although, NGMON Logger has to be able to understand applica-
tion. Hence application has to be rewritten to NGMON Logger’s syntax, when we
need to use structured logging. The goal of this thesis, is to design and implement a
tool for rewriting of Java application’s logging framework. This logging framework

5

1. Introduction

would not run in any Java Virtual Machine, so technically, it would be a set of text
files, which will have to meet the needs of NGMON Logger.

The thesis is organized as follows. Chapter 2, Logging systems, presents an
overview of the most important logging frameworks, which have been used in Java
language in recent years. Chapter 3, Overview of used tools for implementation,
introduces tools, which have been found appropriate during the search for possible
methods of static code translation and creating of LogTranslator application. Chap-
ter 4, Implementation of changing logging system, describes the process of the search
for correct solution for rewriting problem, defined at the beginning of chapter, and
the way it affected our selection of tools, used during the research. We also present
our implemented LogTranslator solution in this chapter. In the Chapter 5, Testing
LogTranslator on Apache Hadoop, we define what needs to be done in order to incor-
porate LogTranslator into your Java application. We also show some excerpts from
example run of LogTranslator. In the end of the chapter, a brief overview is provided
of performance of the Apache Hadoop using NGMON Logger, instead of default log-
ging frameworks. In the last chapter, Conclusion, we summarize the overall findings
of the thesis.

6

2 Logging systems

Logging is a fundamental part of any application. It is not commonly used directly
by customer, but it is vital for supporting and further developing and maintenance
of an application. It would be highly time consuming to search for errors in an
application without knowing what is happening within it. That is why some part of
coding is reserved for logging of states and actions, performed by application.

Mainly, when developing an application, we should focus on what information we
should log. Events, such as start, stop, restart of module, various security informa-
tion, resource management, performed actions like http requests, responds, queries,
triggered actions and errors, which could lead to possible problems in the applica-
tion. For all mentioned events, we should use some kind of logging mechanism, which
stores these messages into a file or just outputs them to standard output stream.
Such mechanism could be a purely custom application, simple outputting informa-
tion using printing support of any programming language, or use a proper logging
framework.

Why should we use logging framework? Why is it not sufficient to use plain simple
System.out.println(), System.out.format() or in case of errors System.err.println()?
To name just a few advantages in favor of logging frameworks:

• ability to control granularity of logs from verbose level to completely disable
logging output,

• possibility to conveniently change log output destination (file, console, remote
socket, JMS, GUI components, . . .),

• keep singular and manageable structure of logs throughout the whole appli-
cation,

• ease of log reading and association with appropriate location and context of
application,

• possibility to completely change logging framework without changing appli-
cation log statements.

Generally, any log message should contain answers for questions such as who,
when, where, what and have a result of performed what action. In the following
sections, we talk solely about the Java programming language and tools available in
this language.

7

2. Logging systems

2.1 Java logging systems

In the world of Java programming language, there are many different logging sys-
tems. Beginning with simple specification - Java Logging API, which is presented
in Java Standard Edition since version 1.4, through the popular frameworks such
as Apache Commons Logging, Apache Log4j to newer frameworks, which take into
consideration the feedback accumulated over the years, about what works, what does
not and what should be done better, and also adjusting to the needs of developers
and demands of technology advancement. Observation shows that approximately 4%
of code is dedicated to logging1, so it would make sense to choose logging framework
wisely to your needs. In the following sections, we provide a brief overview of Java
Logging API, Apache Commons Logging, Apache Log4j projects, Logback and Slf4j
logging frameworks.

2.1.1 Java Logging API

One of the first logging systems for Java was officially specified in JSR-047 JavaTM

Logging API Specification [1] with final release in 2002 for Java version 1.4. Core
functionality of this logging API is provided by classes and interfaces in java.util.logging
package to support maintaining and servicing software for customers2. Specification
describes key functionality elements, as well as targeted log use cases, which led to
creation of specification itself. Following key objects of Java Logging API are:
Logger - hierarchically organized entities for an application or a specific system to

log messages by making individual logging calls.
LogRecord - passes logging requests between logging framework and log handlers.
Handler - exports logRecord object to its destination - memory, output stream,

console, file, socket, etc.
Level - set of standard logging levels for controlling application logs output.
Filter - provides more fine-grained control of logging, than levels. Each handler and

logger can have their own associated filter.
Formatter - provides support for formatting a logRecord object and converting it

to the string.
As stated before, Java Logging API has been created with respect to some specific

use cases. In our case of log usage, it means that we want to be able to identify,
what problem and where has occurred by going through the logs. There was a
significant demand for such problem diagnosis feature, performed by various user
groups, namely:

1. According to http://logging.apache.org/log4j/1.2/manual.html#Configuration
2. http://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html

8

http://logging.apache.org/log4j/1.2/manual.html#Configuration
http://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html

2. Logging systems

End users and system administrators - simple logging of common problems,
which can be fixed or tracked locally - security, configuration or resource
running errors

Field service engineers - generally such engineer needs more complex and ver-
bose logging then system administrator, to find specific subsystem error and
possibly even fix it on site

Development organization - after field service engineer finds an error on site
and passes the verbose logs to its development organization, it would also
like to fix particular error in their system for all customers, so they should
have easily traceable and very detailed logs for fixing it

Developers - during development phase of a project it is always very convenient for
developers, apart from various debugging and profiling tools, to have some
extra information (logs), generated either by developed project or another
cooperating system

Java Logging API supports internationalization, remote access, serialization and se-
curity matters with main requirement principle, stating that "untrusted code should
not be able to change the logging configuration"3.

Figure 2.1: Structure model of Java Logging API.

In Figure 2.1 we can see the model structure of Java Logging API. We will
describe the process [2] of how logs are handled and modified since their creation
until sending them to some output device. This process is used almost in any other

3. Java Logging API overview, Section 1.14 Security on [3]

9

2. Logging systems

logging framework with some minor or major modifications.
In the beginning, global LogManager is created which subsequently creates and

manages all the Logger objects. Those are main objects from user perspective, on
which he can call logging methods. Loggers are hierarchically organized in tree struc-
ture, beginning with root node as empty string and typically continuing with child
nodes as package and module names4. Level associates log event level with Logger
handling given object. User can also assign Filter object to particular Logger for
more fine-grained control of logs. LogRecords are created by Logger and forwarded
to at least one accessible Handler. Handler can have associated Level, Filter and
Formatter object. First two have the very same meaning as with Logger. The third,
formatter, is responsible for converting a log event to the string output and later
can be formatted by pattern defined as an XML or in a custom configuration file.
Final step is exporting the formatted log event to appropriate device by Handler.
Supported output devices by Java Logging API5 are console, stream, file, socket or
memory.

2.1.2 Apache Commons Logging

Being light-weight and having a high level of abstraction for use of independent
logging toolkits, are two main goals of Apache Commons Logging, abbreviated as
JCL (Jakarta Commons Logging)[3]. Having single abstract layer of Log and Log-
Factory interface, JCL allows user to choose from various logging implementations.
JCL offers user the ability to plug-in Log4j, Avalon LogKit, Java Logging API im-
plementation or any other logging system by simple adding of commons-logging.jar
package to the classpath. In some special cases it is also needed to provide an ex-
tra information to commons-logging.properties file as well. In a rare situation when
JCL is not able to pick up any logging library, it will silently fallback to default
simple logging wrapper. Apache Commons Logging standard distribution contains
following jar packages:

commons-logging.jar - contains JCL API, default LogFactory and Log implemen-
tation for Log4J, Avalon LogKit, JDK 1.4 and pre-JDK 1.4 logging imple-
mentation. In most cases, adding only this jar package to classpath should
be sufficient to successfully run JCL.

commons-logging-api.jar - this jar package is intended for use in projects, where
one has to recompile commons-logging using alternative Java environment

4. Logger hierarchy follows the unwritten naming rule of giving names based on your company
reversed website url, project name, modules, sub-modules, etc . . .
5. Implementation is in java.util.logging package since Java 1.4 version.

10

2. Logging systems

and is unable to compile with optional libraries provided by Apache release
of common-logging. This package contains minimum possible dependencies.

commons-logging-adapters.jar - includes only adapters to third-party log system
implementations. It can not be used on its own, because it does not contain
core commons-logging framework.

Log message priority levels follows specifications set by JSR-476. Apache Com-
mons Logging framework offers following priority levels7, ordered by severity accord-
ing their user guide [3]:

fatal - Severe errors that cause premature termination. Expect these to be imme-
diately visible on a status console.

error - Other runtime errors or unexpected conditions. Expect these to be imme-
diately visible on a status console.

warn - Use of deprecated APIs, poor use of API, ’almost’ errors, other runtime
situations that are undesirable or unexpected, but not necessarily "wrong".
Expect these to be immediately visible on a status console.

info - Interesting runtime events (startup/shutdown). Expect these to be imme-
diately visible on a console, so be conservative and keep their number to
minimum.

debug - detailed information on the flow through the system. Expect these to be
written to logs only.

trace - more detailed information. Expect these to be written to logs only.

All of these methods have their counterpart in is<Level>Enabled() to save log
processing overhead by skipping the evaluation of log. This is very useful in cases
where log contains many variables which have to be resolved or various types of
concatenating expressions and strings have to be made by compiler8. Another way
of saving disk and processing, is by setting the level of log statement and effectively
limit the log verbosity by specifying lower boundary of levels. As log levels are or-
dered9, by setting level to warn, only levels higher then warn will be processed, those
are error and fatal levels.

6. JSR 47: Logging API Specification - described in 2.1.1
7. We can consider these explanations as guideline for almost any logging system, using priority
levels for logs.
8. This used to be a problem, but since Java 1.5 release, compiler can cope with string concate-
nation very easily by changing String’s "+" concatenation to StringBuilder’s append method [4].
9. Typical order of log level is: trace < debug < info < warn < error < fatal.

11

2. Logging systems

Internationalization or National Language Support used by commons logging
framework is supported via message file and message keys in logs. Also, they recom-
mend to use internationalized messages for fatal, error, warn and info levels of log
messages, to be easily understood by any system operator.
JCL is designed to offer creation of additional extensions of Log interface, particu-
larly for implementation of new logging systems and LogFactory interface to provide
strategies for discovering underlying logging frameworks.

By having a quick look at download section10 of commons-logging, it is quite
easy to see, that there is no advance in development of version 1.1 since release in
2006. The only visible progress is maintenance offering which seems to happen in
middle of 2013 for version 1.1.3.

2.1.3 Apache Log4j

Another very successful and popular Java logging framework under Apache’s wings
is Log4j. Initial release written for Java 1.3 dates back to 1999 [5]. Current version
1.2.17 is maintenance only, as there has been no development releases from 2007
according to release history11. Originating from E.U. SEMPER project as tracing
API and after many enhancements, iterations and evolution over time it became
logging package for Java. It is ported to other languages like C, C#, Perl, Python,
Eiffel.

Log4j is using the same concept as other logging frameworks - inserting log state-
ments into source code. Provides precise context about running application for easy
debugging and serves as auditing tool as well, because logging statements usually
tends to stay in source code during whole lifecycle of application. Main focus had
been put on simplicity, reliability, extensibility and fastness of logging framework
during design. Simplicity has shown in the three main components logger, appender
and layout. By working together they enable developer to set a given type, a level and
a formatting of logging messages as well as how and where should log be reported to.
Log4j supports same logging levels as Apache Commons Logging, listed in Section
2.1.2. There is also a support to define your own levels, but it is discouraged to do so.

Loggers are named entities, following hierarchical structure to selectively enable
or disable logs. Having one root logger and many child nodes named after software
components to control mentioned functionality with tied logging levels to loggers.

10. Download archive of Apache Commons Logging http://archive.apache.org/dist/commons/
logging/binaries/
11. log4j release history http://logging.apache.org/log4j/1.2/changes-report.html

12

http://archive.apache.org/dist/commons/logging/binaries/
http://archive.apache.org/dist/commons/logging/binaries/
http://logging.apache.org/log4j/1.2/changes-report.html

2. Logging systems

Appender in log4j’s terminology is the output destination of log. Destination can
be any of console, file, GUI component, remote socket server, JMS, NT Event Log-
gers and remote UNIX Syslog daemon. Logger can have more then one appender to
append simultaneously to different locations. It is also possible to use asynchronous
appender.

Customizing log’s output format is used as often as choosing log’s destination
output. Formatting the log request according to user’s demands is done by layout,
associated with appender. Layout’s class PatternLayout formats appropriately log
using similar specification as C’s function printf.

Configuring of Log4j for application usage could be made in two ways. First,
using an xml or a Java property file and second in a less flexible way - fully progra-
matically. Framework does not have special default initialization, which works as is.
Specially Log4j has no default appender. Default initialization procedure looks for
log4j.configuration system property, then falls back to default log4j.properties con-
figuration file and loads resources from there. If there is no resource configuration
found, then Log4j aborts default initialization procedure.

Performance issues are covered similarly as in Apache Commons logging by fenc-
ing log statements by is<Level>Enabled() methods. Great optimization came to log
output formatting by layout module. Same effort has been put to appender modules.
Typical cost of whole logging process is between 100 to 300 microseconds [5].

Its manageable usage - selectively changing logging output, turning logging on
and off or simply changing output format of already finished application by con-
figuring only one file is powerful feature and by minimizing performance cost it
became pretty straightforward to use log4j in many projects. According to log4j’s
wiki page12 development of log4j 1.3 has ended because of too many compatibility
and maintenance issues with newer JDKs in preference to log4j 2.0. Log4j will have
support for existing applications and for JDK 1.5 and lower.

Log4j 2 and Logback logging frameworks try to use and improve log4j based on
new demands and ideas. We will have a look on them in following chapters.

2.1.4 Logback Project

Logback is conceptually very similar to its ancestor log4j, but brings many improve-
ments over log4j. A main developer of Logback is the same one as popular log4j
framework had. Logback’s architecture is generic for various use cases. Designed
of three main modules logback-core, logback-classic and logback-access. Logback-

12. Log4j wiki page http://wiki.apache.org/logging-log4j/

13

http://wiki.apache.org/logging-log4j/

2. Logging systems

classic module can be thought of as advanced log4j. By natively implementing slf4j
API, it is very easy to switch between logging frameworks. Integration with servlet
containers like Tomcat or Jetty is handled by logback-access module. Finally, as
name says logback-core provides main support for previously named two modules
[6]. There is also another specific module13 - logback-audit. It has a significant im-
portance for storing long-term business event logs for auditing purposes.

Between the list of main benefits over older log4j belongs ten times faster im-
plementation, heavy test suite to guarantee overall logback’s stability, mentioned
implementation of slf4j API, automatic reloading of configuration file upon mod-
ification, graceful recovery from I/O failures, automatic compression and deletion
of old log archives, ability to write into single log file by multiple appenders, inter-
active event logging and access viewer, special mode for log event granularity and
debugging purposes and last, but not least, the possibility to use SiftingAppender,
which can log into separate user files defined by which user is running the application.

2.1.5 Apache log4j 2

As mentioned in previous chapter, original log4j project has been transferred to
maintenance only, as developers had changed their focus towards developing log4j
2.0. Apart from main issue with compatibility with JDK 1.6+, there are improve-
ments in asynchronous logging performance, multiple API support, automatic reload
of configuration file upon modification without losing log events and plugin support
for configuration of Appenders, Layouts, Filters, Lookups or Pattern Converters [7]
over its ancestor log4j1. Project is still developed under open source license. Some
of the advancements over Log4j and Logback:

• Significant improvement of lock-free asynchronous loggers using LMAX Dis-
ruptor14 library. Ten times higher throughput in multi-threaded applications
and much lower latency then log4j1 or Logback can be seen in Figure 2.2
taken from [7] section 12.1.5.1 Logging Throughput.

• Concurrent support of locking threads on low level, prevents occurring dead-
locks.

• Ability to pass log event from layout to any Appender, not just to Output-
Stream, thanks to Layout’s return type of byte array instead of String.

13. Actually it is an open source project on its own hosted by website http://audit.qos.ch/
14. LMAX Disruptor: A High Performance Inter-Thread Messaging Library - Nowadays considered
to have the most effective way of sending messages between threads using ring buffer instead of
queues. It was open-sourced in 2011. More information can be found in reference technical paper
http://lmax-exchange.github.io/disruptor/files/Disruptor-1.0.pdf

14

http://audit.qos.ch/
http://lmax-exchange.github.io/disruptor/files/Disruptor-1.0.pdf

2. Logging systems

• Layout format can be more various then fixed form of log4j or Logback.
• Filtering of log events before they are passed to Logger module.

Figure 2.2: Log4j2 asynchronous logging throughput comparison chart with other
logging frameworks.

Log4j 2 does not have backward API compatibility with log4j, instead it offers
adapter implementation. One can also use log4j 2 using adapter for Apache Com-
mons Logging or Slf4j framework to migrate his current logging framework.

2.1.6 Simple Logging Facade for Java

The Simple Logging Façade for Java (Slf4j) is an abstraction layer for various logging
frameworks and provides an end user with the option to simply change logging
framework implementation during deployment of application [9]. Officially supported
frameworks are Java Logging API, Log4j version 1 and 2, Logback and JCL. Other
frameworks can be supported by custom plugins.

To use slf4j for your application, you just have to add slf4j-api-version.jar as only
mandatory package on classpath and optional slf4j binding for your desired logging
framework to use. Only one binding can be used at a time, as you can use only one
logging framework. In case of switching to another logging framework, only change
needed to do is to switch appropriate binding in classpath of slf4j. Here is a list of
supported bindings15:

15. In listing there is omitted version number of Java package for sake of simplicity, for example

15

2. Logging systems

slf4j-log4j.jar - binding for an older log4j version 1.2
slf4j-jdk14.jar - binding for java.util.logging or also known as Java Logging API
slf4j-nop.jar - default no-operation binding, silently discarding all log events
slf4j-simple.jar - outputting log events to standard error output stream, but only

those with level higher then info
slf4j-jcl.jar - binding for Jakarta Commons Logging
logback-classic.jar - native implementation of binding for Logback means no ad-

ditional computational and memory overhead

Figure2.3 distinctly depicts main idea and high level structure of how slf4j han-
dles different bindings. If you choose not to use or slf4j does not find any binding
on classpath, the default slf4j-nop.jar - no-operation module will be used and all
logs will be discarded. This is a default behavior since version 1.6.0 and instead
of throwing a NoClassDefFoundError, slf4j will warn you with single line warning
message. Slf4j interfaces and adapters are very simple and understandable. They do
not use class loading nor access class loaders for binding discovery.

Figure 2.3: Various usage bindings for slf4j framework. Image taken from slf4j’s
manual[9].

slf4j-jcl-1.7.5.jar to slf4j-jcl.jar

16

2. Logging systems

One of many interesting features is capability of slf4j to bridge logging frame-
works and bring them under control of one framework. That means, if project uses
for example log4j and JCL framework, then slf4j can redirect log4j and JCL calls to
slf4j and use later on like native slf4j calls16 Better explanation provide Figure 2.4.
For such cases one should use slf4j-migrator tool.

Figure 2.4: Slf4j bound to logback-classic with redirection of JCL, log4j and
java.util.logging. Image taken from Bridging legacy APIs http://www.slf4j.org/
legacy.html.

Slf4j also supports Mapped Diagnostic Context. In general, MDC is a key-value
based map filled with application specific logging pairs. They can be inserted by
framework into logging messages for future message filtering or action triggering.
These extra logging information is very useful, specially in client-server applications,
where log events can be easily associated with specific client by unique parameters. If
underlying logging framework has support for MDC, slf4j will delegate these logging
pairs to them.

2.2 Diagnostic and Audit logging

By the intended usage og log information, we can basically divide them into two
main categories. The first category is termed as an audit logging and second, diag-
nostic logging. To clear things up, audit logging is a kind of logging, which developer

16. More information is available on project web page explaining bridging http://www.slf4j.org/
legacy.html.

17

http://www.slf4j.org/legacy.html
http://www.slf4j.org/legacy.html
http://www.slf4j.org/legacy.html
http://www.slf4j.org/legacy.html

2. Logging systems

or system administrator does not need much for their work. On contrary, such in-
formation is vital for security reasons, auditing purposes and any customer, whose
application is connected with money operation and high fluctuation of potential and
contemporary customers like banks, insurance, government or electronic shop sys-
tems. Every interaction made with system should be logged and stored for future, in
case something bad might have happened. That means, storing who, when and from
where someone logged in and out of system and what transactions has he made dur-
ing his visit are very important to know and log. If system is really crucial such user
action transaction should not execute successfully, in case of inability to properly
create and store appropriate transaction log.

On the other hand, diagnostic logging is not so important for customer (as ser-
vice provider), but it is for developer and system administrator, mainly to better
understand the flow of the application. Being able to figure out where is what prob-
lem and fix it quickly is one of the main goals for maintaining high availability and
security of application.

Both of these categories can become very large in terms of disk usage during
period of time. Of course, not every company chose to log everything and each
having different policy of log rotation and storage. But if company has to store such
large data for a longer period of time and also being able to search in them, it
can become a complicated and significant task to tackle. Also collecting this data
to analyzing unit is another aspect of this problem. Logging mechanisms currently
used in logging frameworks to output to files or devices are becoming an obsolete
solution, so we should look for new ways of handling these information.

2.3 Structured logging as opposed to natural language logging

Natural language logging is what we use in almost any logging framework today.
All of the frameworks presented in Chapter 2 use from bigger part natural language
in their logging statements. They give free will to developer to write anything in
logging statement as there is no restriction on format and content because whole log
will be converted to string after all. Of course, developers can use strict format of
their log statements in projects to imitate structured logs after internal agreement,
but it is mostly only the temporary solution to problem. Following snippets of code
in Listing 2.1might be very familiar for reader.

Structured logging is one of possible solutions for problem, described in the last
paragraph of Section 2.2. Structured logging in its very basic form is a mechanism
of sending a structured message in a JSON or an XML format with given log in-
formation to central log storage. This message is created from log statement which
form is designed to be read (parsed) by computers, rather then humans. Such sent

18

2. Logging systems

LOG.warn(" Hadoop command -line option parsing not performed . " +
" Implement the Tool interface and execute your" +
" application with ToolRunner to remedy this.");

...
LOG.debug(" default FileSystem : " + jtFs. getUri ());
...
LOG.warn("No job jar file set. User classes may not be found."+

"See Job or Job# setJar (String).");
...
LOG.debug(" Configuring job " + jobId + " with " + submitJobDir +

" as the submit dir");
...

Listing 2.1: Use of natural language in log statements. Example has been taken from
Hadoop project - org.apache.hadoop.mapreduce.JobSubmitter.java file.

log is termed as event in structured logging terminology. Events can be send to var-
ious devices over conventional transport mechanisms. When event is delivered to its
final destination, log storage or processor, it is conducted for further event analy-
sis. Analysis of event is much easier, as processor already knows what data is held
in obtained message and there is no need to figure them out using various parsing
mechanisms for processing of natural language formatted logs.

Writing structured log statements is not a very popular choice for developers.
In most cases it takes less time to write similar log statement in natural language.
Syntax of structured statements is similar to following examples in Listing 2.2.

It seems like JSON format might be used more in future, because it is much
faster in the means of time processing and easier to read for human then an XML
file containing same data. On contrary its simple data types can be limiting in some
use cases where XML would be favored. Following Listing 2.3 depicts examples of
two already processed log events in JSON format, prepared for deliverance.

2.3.1 Common Event Expression

According to authors of log analysis study [10] conducted in 2002, there are few major
problems reoccurring and preventing of better utilization of logs. These problems
were summed up after deep examination of log records from web and digital library
systems and namely they are:

19

2. Logging systems

val logItem = Json.obj(
" @source " -> instanceID ,
" @fields " -> fields ,
" @timestamp " -> dtFormat .print(now),
" @source_host " -> "mn.local",
" @source_path " -> sourcePath ,
" @message " -> msg ,
"@type" -> eventType

)
...
var Logger = require (’testApp ’);
var log = new Logger ({ name: ’hello ’ /*, ... */ });
log.info("Hello %s", "world");

Listing 2.2: Example of structured log statements used in source code.

{ " _index " : "logstash -2013.12.07 ",
"_type" : "play",
" _source " : { " @source ":"test -log",

" @fields ": { " instanceID ":"test -log",
" request ":"GET /test -log/index.html",
"user -agent":" Mozilla /5.0",
" httpCode ":200 ,
" duration_ms ":123} ,

" @timestamp ":"2013 -12 -07 T13 :12:56.123 Z",
" @source_host ":"local",
" @source_path ":"GET /test -log/index.html",
" @message ":"Index displayed ",
"@type":"INFO" }

}
...

{ "name":"hello",
" hostname ":" hamster .local",
"pid":3421 ,
"level":20,
"msg":"Hello world",
"time":"2013 -12 -28 T17 :25:37.050 Z"}

Listing 2.3: Examples of structured log messages in JSON format from logstash

20

2. Logging systems

ambiguity - semantic of log format entries is not proper to fully distinguish between
different ones,

complexity of logs - analysis of bigger number of logs proved to be challenging,
disorganization - poor structure and organization of logs,
incompatibility - various forms of log formats thwarts possibility to use same

analysis tools,
incompleteness - some of the key information were missing to fully understand

particular log,
inflexibility - too much of system specific information to be used on other nodes

or computers,
verboseness - overwhelm of redundant dumped system log information.

Collective will to eliminate mentioned issues and need for unified event represen-
tation and classification across multiple applications led to creation of specification
- Common Event Expression[11] a unified event language for interoperability. De-
veloped by cooperation of industry companies, end user groups, individual experts
and U.S. government organizations. By unifying events, end users do not have to
worry about writing their own adapters and log management becomes much easier
to handle, as all events generated by event data producer are classified and have
structure defined by vocabulary and common syntax.

Lifecycle of one event can be divided into six fundamental steps depicted in
Figure 2.5 and defined as:
Describe - description of event is based upon given requirements
Encode - event is encoded into record
Send - record is transported to its destination
Receive - receiving of transmitted record by log storage or analyze processor
Decode - decoding of obtained record into event
Analyze - event is analyzed and compared with requirements which may lead into

further issue investigation
The CEE standard describes a data structure for multiple profiles. A CEE Profile

consists of two main components - a field dictionary and an event taxonomy. A
field dictionary specifies field names with description and their associated names to
use with this field. For example "time" as field name would have associated names
"timestamp", "date", "occurred". Event taxonomy is a vocabulary of event tags to
provide consistent classification over whole organization and various applications. As
vocabulary can be used an enumerated set of fields from field dictionary. CEE Profile
use two primary profiles. First, function profile, can be applied on all applications

21

2. Logging systems

Figure 2.5: Event lifecycle in CEE standard using three main fragments - Re-
quirements, Events and Records. Image taken from About CEE - Archive http:
//cee.mitre.org/about/.

of one type to have common log mechanism. Other, product profile, can define set
of logging rules on one specific product.

To obtain higher goal, having same structure of events across multiple applica-
tions and organizations, CEE provides common, shared vocabulary and taxonomy as
Core profile. This profile would need to be adopted by other communities and orga-
nizations to benefit from same field dictionary and taxonomy regardless of source of
log event. In such case, the consumer would not need to worry about different event
structure and could freely expect same event data across all applications sharing the
same CEE profile.

Sadly, between years 2012 - 2013 sponsorship for Common Event Expression has
been halted. Subsequently MITRE has stopped all their work on CEE standard. Al-
though ideas still live in fedora-hosted projects Lumberjack17 and ELAPI18 - Event
Logging API. Lumberjack focuses on updating and enhancing event log architec-
ture as well as to improve creation and standardizing the content of event logs by
implementing concepts and specification defined by Common Event Expression.

ELAPI provides an abstract layer for storing destination, may it be a file, syslog
or database, for changing it to more advanced logging facility without need of touch-
ing existing logging application. It creates logs, which are easy to manage and are
of various structure and complexity in contrary of having a one fixed log structure.

17. Lumberjack’s project website https://fedorahosted.org/lumberjack/
18. ELAPI project website https://fedorahosted.org/ELAPI/

22

http://cee.mitre.org/about/
http://cee.mitre.org/about/
https://fedorahosted.org/lumberjack/
https://fedorahosted.org/ELAPI/

2. Logging systems

Posses the ability to represent the same data for human and computer by format-
ting obtained data appropriately in the most pleasant way and secures reliability of
log storage, so important log events will not be lost, by defining a fail-order list of
support destinations.

As a side-note Python natively supports structured logging and may output
these logs in JSON format. Another interesting logging framework currently under
development, operating with structured logs is experimental project New Generation
Monitoring system.

2.4 New Generation Monitoring Logger

2.4.1 Overview of NGMON Logger

After presenting nowadays state of various logging frameworks, needs and prob-
lems around logging, community in Masaryk’s University have concluded that there
should be an answer for these questions by creating its own logging framework. New
generation monitoring Logger (NGMON) system is an experimental logging moni-
toring project under heavy development by community led by Daniel Tovarňák. It
aims to be lightweight, extensible and interoperable in terms of functionality and
to provide single access point for multiple simultaneous tenants accessing local and
remote monitoring information of applications in its scope. It is secured on multi-
ple levels by fine grained access control list, write-protected by encryption of AES
logarithm on database level. Having small memory and processing usage and main-
taining high write throughput by having structured monitoring events object as
main element is endorsed asset as well. Overall architecture overview of data flow
of NGMON is depicted on Figure 2.6 taken from [12]. So far, NGMON is in Java
language only, but further languages will be supported in future. All information
about NGMON has been acquired from [12], [13] and [14] publications.

Figure 2.6: Data flow architecture of New Generation Monitoring.

23

2. Logging systems

By monitoring event we consider any notification, log or measurement. Notifi-
cation is a message of various importance and usually needs further investigation.
Typically, it is sent by email to administrator. Log can be any kind of message orig-
inating from arbitrary subsystem of monitoring entity and is usually sent into file
or device as message in natural language19. Measurement is a quantitative informa-
tion or metric of entity, but mostly it is used and computed by internal protocols.
These three categories, event objects, are represented as typed data object with de-
fined structure in JSON format with the same destination. All of them should be
collected in a unified way and represented in the similar format, despite being a
different in nature, but still considered as event objects. It is done this way, mainly
because of minimization of an already highly complex and diverse events today. Data
format of event object should be of following properties:

1. Standardized
2. Self-describing
3. Based on extensible schema
4. Structured
5. Compact
Most of these properties have already been mentioned in the CEE Section 2.3.1

describing standard, so it seems that NGMON is the right path. Structure of event
objects is defined in one of two possible schemas. Either in predefined fixed or custom
type schema, specific to particular event needs. Schema support part of Common
Event Expression standard mentioned earlier, in particular the support of JSON for-
mat encoding. CEE Log Syntax can be helpful in providing five event data format
properties listed in previous enumeration. Typical event generated into JSON by
producer has structure similar to one depicted in Listing 2.6. NGMON’s events can
be transported also in XML or YAML format if needed, but prioritized is JSON data
format. Monitoring events can be delivered in two means between sensor, the event
producer, and the event consumer. Notifications and publish-subscribe20 interactions
are performed by producer via push model. Query based response initiated by con-
sumer uses pull model. Communication is provided by custom SSL encrypted TCP
protocol, where JSON event object is in a single body of frame. Synchronous and
asynchronous transfer mode of data is supported for concurrent access of multiple
tenants.

19. As stated before in Chapter 2.3
20. Publish-subscribe is a messaging pattern, where senders - publishers create a content and have
no idea about who receives - subscribes for their messages. So subscriber receives only messages he
is interested in - subscribed for.

24

2. Logging systems

1 private final static Logger LOG = Logger . getLogger (MyClass .
class . getName ());

2

3 if (LOG. isFatalEnabled ()) {
4 LOG.fatal("Fatal error occured ! " + error + " happend

on host " + address . getHostAddress () + " at " +
System . currentTimeMillis ());

5 }
6 ...
7 if (LOG. isWarnEnabled ()) {
8 LOG.warn("User " + user + " has exceedded his quota

limit: " + limit + " by " + exceeding);
9 }

Listing 2.4: Example of log statement used in most logging frameworks today.

2.4.2 NGMON’s logging system

What is significant about NGMON is its generation of event objects by custom log
statement syntax. Typically as seen in Java Commons Logging, Java Logging API,
Log4j, Slf4j, Logback or similar frameworks, logging statement is still in more-less
traditional syntax, which was defined in Java Logging API in 2004. Since then no
major breakthrough happened in the world of logging frameworks, despite massive
cloud computation advancements, multitenant usage and processing of such grid
data. NGMON tries to blaze out its own new way in this area, by creating its own
logging system, called Java Event Logger. JEL should satisfy needs proposed earlier
in Listing 2.4.1 and still maintain some degree of user friendliness.

NGMON’s API is based on Logback project and performance of this logging
framework should be comparable with frameworks using unstructured loggers. Log
statements similar semantically or intentionally similar by design are grouped tightly
together by using same namespace. Namespace could be reused across different
projects and/or companies and save some amount of work for developers by using
already defined statements.

One can compare traditional syntax depicted in Listing 2.4 with NGMON’s de-
picted in Listing 2.5 using simple log definition and statements.

Log statements in Listing 2.5 on line 8 would generate the JSON log event de-
picted in Listing 2.6.

Developers have conducted two performance experiments to test their ideas.
The first experiment was about testing performance of log statement execution,

25

2. Logging systems

1 Logger DAEMON_NS = Logger . getLogger (NS_Daemon .class ,
2 new JSONWriter ());
3

4 if (LOG. isFatalEnabled ()) {
5 DAEMON_NS .error(error , address . getHostAddress (),
6 System . currentTimeMillis ()).tag(clazz).fatal ();
7 }
8 ...
9 if (LOG. isWarnEnabled ()) {

10 DAEMON_NS . user_exceed_quota (user , limit , exceeded)
11 .tag(QuotaChecker . class).warn ();
12 }

Listing 2.5: Example of log statement used in NGMON logging framework.

{’Event ’:{
’id’:16086 ,
’occurrenceTime ’:’2014 -01 -15 T12 :05:27.567 Z’,
’hostname ’:’machine2 . mydomain .cz’,
’type ’:’org.myorg.myapp. quotachecker . user_exceeded_quota ’,
’application ’:’My Application ’,
’process ’:’myapp ’,
’processId ’:27881 ,
’severity ’:2,
’http :// myapp.myorg.org/v0 .1/ events .jsch ’:{

’user ’: ’tester ’,
’limit ’: 1024 ,
’exceeded ’: 150

}
}}

Listing 2.6: Example of NGMON generated structured log.

26

2. Logging systems

serialization and appending data for file or syslog between unstructured natural
language statements and traditional statements using Logback opposing structured
statements using NGMON’s Java Event Logger. JEL proved to be on similar level
as statements in natural language. Logback was faster by 30 - 40%, and expectably
winning test. The second undertaken experiment tested performance of extracting
and processing of obtained log event. Events were of two different kinds, represented
as natural language and parsed by regular expressions, and structured events queried
by JSON processor. A set of regular expressions was used to match various types of
events, which proved to be significantly slower then simple JSON query. Even with
unrealistic scenario, when regular expression was used as first item in set, querying
was faster by 25%. Results and detailed information can be seen in published paper
[14].

27

2. Logging systems

2.5 Summary of various logging systems

This whole chapter was a somewhat brief history and overview of generally most
available and used logging frameworks for Java language that proved to work and
satisfy need of given project at present time of development and usage. Ranging
from Java Logging API through Log4j to Logback and structured logging standards
and frameworks, spanning over 20 years or development and we are still unsure of
whether it is the best possible way to use monitoring events like we did in past and
do nowadays. Some people [15] are negative about progress towards structured log-
ging frameworks and consider them to be most probably waste of time. On the other
hand, they see various problems with present state, but do not offer any solutions.
There are few technical blog posts about proposal and general best practices for
structured logging from individuals and project groups like Splunk 21, Logstash22 or
Bunyan23 for popular Javascript web platform Node.js.

With growing number of cloud computational usage, applications processing huge
amounts of data, demands for clear, proper and not overly-verbose monitoring in-
formation have rapidly rose up. As we are unaware of new possibilities of processing
these large amounts of data, leaning towards structured logging frameworks seems
like a good way to at least do some progress in present state of logging frameworks
which are getting rusty. If this would also initiate new ideas of how we perceive, could
monitor and process data in more suitable way, it might be also a great achievement
in our opinion.

When we want to test NGMON Logger properly with many applications and
spread this logging framework, we need more applications to use NGMON. To
achieve this goal, application’s present logging statements have to be changed into
suitable format. NGMON introduces new semantics and syntax for logging state-
ments which we presented in Listing 2.5. This thesis shows four attempts of how
to manually and later semi-automatically change Java application’s default logging
framework to NGMON’s. They all will be presented in successive chapters.

21. Splunk products specializes in collecting, indexing, exploring, analyzing and visualizing the
data. http://dev.splunk.com/view/logging-best-practices/SP-CAAADP6
22. Logstash is a tool for managing events and logs. After initial collection it parses, analyzes, stores
and makes logs searchable http://www.logstash.net/
23. Bunyan project website https://github.com/trentm/node-bunyan

28

http://dev.splunk.com/view/logging-best-practices/SP-CAAADP6
http://www.logstash.net/
https://github.com/trentm/node-bunyan

3 Overview of the tools, used for implementation

3.1 Used Tools

In this chapter we mention all tools we have worked with, in chronological order.
When they were found as an interesting choice for us and were actually used, while
trying to implement them in the best possible way of rewriting current logging
framework in application to fit NGMON’s syntax.

Starting with gathering all logs from Apache Hadoop project using Intellij IDEA’s
search and export to file function and manually rewriting the code, following with
simple script in python by matching strings from the same IDEA’s exported search
text file and frivolous search and replace in source code as pure text file, formatted in
Java language, to some more advanced approaches like tinkering with Java Compiler
API and changing internal objects of compiler. Final and probably the most elegant
solution is done using ANTLR framework for rewriting of tokens in syntax trees
generated by ANTLR1, when parsing the java input files.

3.1.1 Git

Git is a very popular and powerful open source version control system used in many
projects, particularly in many open source projects, as it was also originally designed
for these kind of work. Gaining on popularity due to its easiness of use, fastness,
decentralization and rich functionality [16]. We also chose to use git and as a project
home for NGMON Logger, we have selected GitHub, a free project hosting repos-
itory website. LogTranslator git repository can be found on url2 containing all our
developed source codes.

3.1.2 Sublime Text

Multipurpose sophisticated text editor, which functionality is extendable by vast
number of plugins, varying from different needs of contributors, makes Sublime Text3

a very efficient, yet still easy to use text editor. As there was no need for specialized
Integrated Development Environment for our Python prototyping, we used sublime
text editor in conjunction with Python plugins for our first and naïve log statement
rewriting approach.

1. ANother Tool for Language Recognition http://www.antlr.org/
2. LogTranslator git repository https://github.com/michalxo/LogTranslator
3. Official Sublime Text website http://www.sublimetext.com

29

http://www.antlr.org/
https://github.com/michalxo/LogTranslator
http://www.sublimetext.com

3. Overview of the tools, used for implementation

3.1.3 IntelliJ IDEA

IntelliJ’s Integrated Development Environment IDEA4 is designed for programming
in Java, specially for projects profiting from Java Enterprise Edition standards usage.
IDEA supports many enterprise frameworks like Spring, Enterprise Java Beans,
Google Web Toolkit, Struts, Google App Engine and offers many other advantages
for fast development of various applications.

At first we used its structural search and export to text file function as input for
prototyping application using simple and naive 4.1 python script for changing logs.
Later it was used as should be with Java Compiler API in hand with Java Pluggable
Annotation Processor and finally with ANTLR as final decision for building log
rewriting tool - LogTranslator and testing purposes.

This IDE is considered to be one of the best for Java development, but on the
other hand, it is not free of charge5. For our project, we have been using Ultimate
version because of Apache Maven and easy integration with bigger, multi-moduled
project - Apache Hadoop, which is written in compliance with Java Enterprise Edi-
tion standards.

3.1.4 Apache Maven

Maven6 is what a project engineers would call Project Management Tool or by major-
ity of its users, build tool [18] to build deployable artifacts from source code. Maven
was originally designed to simplify building process of Jakarta Turbine project from
several projects with different Ant7 build files. Apache took over Maven and devel-
oped it in to what we use today - build multiple projects together and publish or
share project information for next reuse [17]. Maven is capable of doing many things
that Ant can not do in a convenient and straightforward way or is simply incapable,
because it is more of build-only tool. We can safely consider Maven to be a platform,
rather then a tool, because it does not only simplify build management, but also
encourages a common interface between developers and software projects.

Capability of many different tasks over source code and project itself is another
domain for Maven. Tasks are ranging from basic build tools like preprocessing, com-
piling, testing, packaging, installing through deploying and cleaning to running var-
ious reports, source code and release maintenance or generating websites.

More formally, Maven is a project management tool, which encloses a Project

4. IntelliJ IDEA’s website address http://www.jetbrains.com/idea
5. There is a possibility for free of charge usage of Ultimate edition (fully supports Java EE), if
project is open source and IntelliJ’s developers approve your request.
6. Official Apache Maven project’s website http://maven.apache.org/
7. Apache Ant (Another Neat Tool) is similar to make build tool, but it is mostly suited to Java
language and platform. As a main building file serves build.xml.

30

http://www.jetbrains.com/idea
http://maven.apache.org/

3. Overview of the tools, used for implementation

Object Model8, lifecycle of project, dependency management system and execution
of various actions via plugins during specific lifecycle phases of project. Project con-
taining multiple artifacts, each having its own pom module is a standard situation
for Maven, where it applies its cross-cutting logic from a set of shared plugins.

Maven can easily grow from tiny build and distribute tool to monstrous size,
handling every operation needed by versatile demands of huge project. To preserve
its functionality for any platform of choice, there is a simple concept hardwired with
Maven - convention over configuration. That means, developers are not required to
create build process themselves or set up every configuration detail. Also applica-
tion can safely assume some reasonable system default settings, so everything should
work straight away, without the need of fiddling things out9. As a result of following
this concept, using framework defaults, it is much faster to setup and execute project.

Following list displays some of directory default values, where $basedir variable
points to projects main directory.
${basedir}/src/main/java - source code of all Java classes (except tests)
${basedir}/src/main/resources - various configuration and property files, some-

times in META-INF folder like persistence.xml, beans.xml, applicationContext.xml,
log4j-conf.xml

${basedir}/src/main/webapp - designed for web application archive content -
for example it contains folder WEB-INF with configuration web.xml and vari-
ous property files,

${basedir}/src/test - contains source code of all Java test classes
${basedir}/target - stores compiled classes and built deployable packages

Maven is able to perform various tasks during specific lifecycle phase of project.
Just for illustration, there are in total thirty phases10 depending on type of packag-
ing, during which you can interact with project through defined goals and native or
custom-made plugins. Thanks to all of mentioned characteristics, there is no doubt,
that Maven has naturally evolved into a non-written standard in Java SE and EE
for production and academic use.

8. POM - a well-formed XML file pom.xml for given project or artifact, which describes structure,
dependencies as well as what and when should be done by Maven plugins with common project(s).
9. Albeit you can always change location of source code and target as well as can be overridden
almost any specific behavior.
10. Apache Maven 3.0.4 has following phases: validate, initialize, generate-sources, process-sources,
generate-resources, process-resources, compile, process-classes, generate-test-sources, process-test-
sources, generate-test-resources, process-test-resources, test-compile, process-test-classes, test,
prepare-package, package, pre-integration-test, integration-test, post-integration-test, verify, install,
deploy, pre-site, site, post-site, site-deploy, pre-clean, clean, post-clean.

31

3. Overview of the tools, used for implementation

LogTranslator project uses Maven as a project management tool and works with
Maven projects. Generation of source code is performed into one of main directories
- specifically into ${basedir}/src/main/java/ directory.

3.2 Language processing tool - ANTLR

ANTLR (ANother Tool for Language Recognition)11 is a powerful parser generator
for reading, processing, executing or translating of structured text or binary files. It is
widely used in production and academical environment for various language specific
operations. Twitter’s search engine, Hadoop related projects (languages) Hive and
Pig, Oracle SQL Developer IDE, Netbeans IDE’s C++ parser depend on ANTLR,
also Hibernate’s HQL language for object-relation mapping is written in ANTLR.[22]

Those were just a few of the companies that highly depend on this successful
open-source project, which has recently released version 4. Apart from mentioned us-
ages, one can create his own property file reader or JSON parser, regular expression
matcher, code converter (also translator) or some any other language case-specific
tool. In our case, we used translator feature of ANTLR, which generates parse tree
or abstract syntax tree, walkers, listeners and translators based on visitor pattern
(see Section 4.4.4).

It is worth mentioning, that there is only Java implementation of ANTLR12, but
one can create tool for any language or purpose he needs to.

3.3 Chosen application - Apache Hadoop

As an example application for our all testing purposes with swapped logging system
from default’s to ours and ideal for cloud oriented logging system was chosen Apache
Hadoop13 project. Lately this project has become very popular and its production
usage is booming because of its main properties designed specially for cloud oriented
problems. Hadoop is chosen often because of its massive scalability, high reliability,
availability and as fault-tolerant distributed oriented system for huge data storage
and processing on big data sets spread across multiple clusters ranging from single
to thousands of machines.
[21]

Apache Hadoop project consists of four main packages (projects):

11. Official ANTLR website http://www.antlr.org
12. Officially supported by author Terrence Parr. He does not plan in near future to invest his time
to reimplement ANTLR to different programming language.
13. Apache Hadoop website address http://hadoop.apache.org

32

http://www.antlr.org
http://hadoop.apache.org

3. Overview of the tools, used for implementation

Hadoop Common - foundation package provides filesystem, operating system ab-
straction layer and tools needed for cooperation of different projects,

Hadoop Distributed Filesystem (HDFS) - a distributed file system designed
for running on commodity hardware. It is highly fault-tolerant and is designed
to be used on low-cost machines. HDFS also provides high throughput and
besides that, it is still similar to any other existing distributed file systems.

Hadoop MapReduce - implementation of a programming model for large scale
data processing based on Google’s ideas.

Hadoop YARN - a resource-management platform, responsible for managing com-
pute resources in clusters and using them for scheduling of users’ applications.

other - many Hadoop related projects like Ambari, Avro, Cassandra, HBase, Hive,
Pig, Zookeeper provide auxiliary support14.

Hadoop project has been chosen as LogTranslator’s example prototyping appli-
cation for various log usage collecting, because it is a big project consisting of ap-
proximately 500 classes with log usages, has multiple contributors and uses Maven
building system. As we have found out, Hadoop uses three different logging frame-
works, Log4j, Slf4j and Apache Commons Logging. Multiple contributors mean a lot
of coding styles (preferences), so we could see much of various code usage in original
log methods, which we could handle. On the other hand, the building process of
Hadoop module is daunting and can easily fail.

14. We have not used any of those projects for log translation purposes.

33

4 Implementation of changing logging system

When we first wanted to fill up NGMON logging framework with testing data, there
was no “real“ application using it. We were going to take an existing well-known and
widely used application and turn its logging framework into NGMON’s instead of
actual one. It might be either Java logging util, Slf4j, Log4j, Apache Commons Log-
ging, Log4j2 or any other non-NGMON logging framework. To successfully achieve
this goal, we had to change the following features in the given application:

• change related log imports to NGMON’s and add new ones,

• change log definitions to NGMON’s,

• change checker methods like LOG.isDebugEnabled() into custom “dummy“
logger always returning true,

• turn original log statements into new NGMON’s syntax with method names
as event names,

• parse all variables and their appropriate types if possible1,

• generate appropriate log namespaces which would contain relevant events

There were many challenges, but one stood out, which was mentioned above. To
parse all variables reference from within and out of given class, and use them to
create new log methods in NGMON syntax. This syntax is very different from what
we have seen so far in logging frameworks. To make our point clear, please see
Listings 2.4 and 2.5. This means, that we have to change for example following log
statement in natural language

LOG.debug(" Update nonSequentialWriteInMemory by " + count +
" new value:"+ nonSequentialWriteInMemory);

into the following statement, done in a more structured way of NGMON syntax

LOG. update_nonsequentialwriteinmemory_by_new_value (count ,
nonSequentialWriteInMemory).tag("write -in").debug ();

1. Although, we are able to get almost all of variable data types, NGMON uses only types support-
ing JSON format - Number, String, Boolean, Array, Object, null. In our LogTranslator application
we operate with Java primitive types and String by explicit type-casting to them.

34

4. Implementation of changing logging system

We have taken three different steps which lead us to fourth, final and probably
the best solution so far. Those four steps were:

1. Manual rewriting - completely manual rewriting and creating of all log dec-
larations, statements, imports, variables. Described in detail in Chapter 4.1

2. Python prototyped script - simple script, which helped us to understand what
is necessary to do in order to translate application’s logging framework. How-
ever, it was unmanageable as the “main project“ in future. More information
is in Chapter 4.2.

3. Pluggable Annotation Processor - use of Java Compiler and Pluggable An-
notation Processor to trigger custom code during compile time and modify
compiler’s internal symbols table and rewrite source code during actual com-
pilation. Details are in Chapter 4.3.

4. ANTLR project - by using language recognition tool, we do not have to deal
with compiler internals, on contrary it is just another application which does
all the hard for us, so we can focus on our problem. Further reading is in
Chapter 4.4.

It is worth to note, that we can not use any kind of Java Reflection Utils, because
we are not translating code in runtime, which would normally be in Java Virtual
Machine, thus we have to translate code with other tools and our input is only text
file, which accidentally has .java suffix. In the following sections we talk a bit more
about all of these steps we had taken.

4.1 Naïve approach using structured text

The very first contact with what had to be done was during this first phase. We
have extracted all the LOG.<method>() calls from IDEA and stored them into text
file. It is important to mention, that we were interested in all log calls, except those,
used in tests. Therefore we would count and change only useful and executive log
calls from application.
~/ hadoop - common /src/main/java/org/ apache / hadoop /http (13 usages found)

HttpServer .java (13 usages found)
HttpServer (String , String , int , boolean , Configuration , AccessControlList , Connector , ...) (1

usage found)
(281: 9) LOG.info(" adding path spec: " + path);

addJerseyResourcePackage (String , String) (1 usage found)
(430: 5) LOG.info(" addJerseyResourcePackage : packageName =" + packageName

addFilter (String , String , Map <String , String >) (2 usages found)
(504: 5) LOG.info(" Added filter " + name + " (class =" + classname

addGlobalFilter (String , String , Map <String , String >) (1 usage found)
(526: 5) LOG.info(" Added global filter ’" + name + "’ (class =" + classname + ")");

start () (3 usages found)
(684: 9) LOG.info(" Jetty bound to port " + listener . getLocalPort ());
(687: 9) LOG.info(" HttpServer . start () threw a non Bind IOException ", ex);
(690: 9) LOG.info(" HttpServer . start () threw a MultiException ", ex);

35

4. Implementation of changing logging system

stop () (4 usages found)
(774: 7) LOG. error (" Error while stopping listener for webapp "
(784: 7) LOG. error (" Error while destroying the SSLFactory "
(794: 7) LOG. error (" Error while stopping web app context for webapp "
(801: 7) LOG. error (" Error while stopping web server for webapp "

Listing 4.1: Excerpt of IDEA’s search for LOG.<method>() usage output showing
logs used in HttpServer.java class of Apache Hadoop project.

In our case Apache Hadoop had 4718 calls on log object in 801 files, which met
these conditions. Example of IDEA’s output can be seen in Listing 4.1 That is quite
a big number to process them manually. Just to see how long it would take, we
have changed a few dozens of log methods and got an average time of 1 minute
and 27 seconds per log change. For simpler logs, changing syntax took around 47
seconds, and for more complex syntaxes, this time interval was longer, coming up
to 2 minutes. In addition to that, we counted 10 seconds to create new method into
appropriate NGMON’s namespace. Also, we had to change imports, log definition
and “log checker“ methods.

Assuming that each one of 801 files has its own log definition and imports, chang-
ing Hadoop’s logging framework into NGMON, would have taken around 466325
seconds which is roughly 129, 5 hours. This number was calculated using the for-
mula in Listing 4.2 and values were from Table 4.1.

Change or create abbrev. Time needed [seconds]
Appropriate imports imp 10
Log definition def 10
Log checker method chec 5
Log method log 87
Create method in NGMON’s namespace ns 10

Table 4.1: Measured time in seconds needed to manually transform single appropriate
logging statements to NGMON’s needs.

Let’s assume that following statements are true. Every log checker2 method has
in general half the count of number of logs. In the best scenario, every log should
have appropriate checker method, but generally, in real projects this is not true at
all. Also some logs can be the same as others, but can have different variables with
the same data type, so we can ignore another generation of the same namespace log
method. Assume that this number is between 5 − 15% and very project specific, so
let’s stick with 10% as an average value.

2. By log checker methods we consider for example LOG.isInfoEnabled() method call.

36

4. Implementation of changing logging system

chec_logs = all_logs÷ 2
total_time = number_of_files · (imp+ def)+

chec_logs · chec+
all_logs · log + all_logs · 0.9 · ns

Listing 4.2: Rough estimation formula for conversion to NGMON’s project

According to this estimation, one has to work for 130 hours, what is 17 work-
ing days, just to rewrite whole Apache Hadoop manually. And this is only rough
estimation, which does not include human errors, checking for already “generated“
methods in namespace. Above all, one has to be fully focused on task for whole time
not to make mistakes, which is obviously physically impossible. Imagine we would
find out in the middle of translation process, that we could not cope with Hadoop
and were forced to switch to other application. This whole manual work seemed
like a naïve idea, so we quickly moved away from this solution and moved to more
automatized solution.

4.2 Python prototyping application

As a first semi-automatized solution we came up with a short script in Python,
which would do the work we expect to transform arbitrary Java logging framework
to NGMON’s.

Script starts by looking into IDEA generated file, which has exactly the same
structure as in previous solution in Listing 4.1, and parses one log method after
another. Each of these log methods are distinguished by path to Java file containing
it and even by exact position (line : column). One little problem was, that log call
were not complete, missing another lines of code, when log method has been spread
over multiple lines, so whole log method had to be “reparsed“ again. Extracted vari-
ables and content of log call could be easily used to generate new log method for
NGMON’s namespace and replace given log in the original Java source code file.
Very soon we hit a barrier with two major problems. First problem was inability
to easily get types of variables and use them properly, as well as too complicated
statements used in logs thanks to rich properties of Java language. Second was from
long term standpoint - harder code maintenance and complicated string operations.

Soon we have started to consider more advanced approaches to think about
source code and its parsing. We got into simple programs which can create Syntax
Trees from source code files. Namely, it was through Eclipse Java development tools
(JDT), which provided API to access Java source code via abstract syntax tree3 or

3. Eclipse’s introduction to Abstract Syntax Tree and code manipulation - http://www.eclipse.
org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html

37

http://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
http://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html

4. Implementation of changing logging system

Java Model. While half of the work had been done, we tried some simple examples
of how to connect Java and Python programs together and even call methods from
one language and work in other4. Results looked really interestingly, but they put us
on the wrong line. We were keen to go back and not to try to reinvent the wheel, we
left this half-finished approaches and moved into some more serious solutions which
were proved to work.

While it might seem that this approach gave us almost nothing new, it was
entirely true. We have found out, that fiddling with Abstract or any other Syntax
trees are the correct way to rewrite source code without doing all the manual work.
Latest source code of log translation python script can be found on github5, in
one of the commits in history, as we have completely devoted repository to Java
LogTranslator application only.

4.3 Pluggable annotation processor and Java Compiler API

Coming to the more advanced solutions, we have decided to attempt a combined
use of compiler and annotation processor, which will be plugged into compilation
process and forced to be used during annotation processor phase, before compilation
of source codes themselves. First, let’s have a look at those two interesting tools
which are present in Java 1.6 by default.

4.3.1 Pluggable Annotation Processing API - JSR 269

In Java version 1.6 there has been added functionality for standardized way of com-
piling Java source code files from Java program itself. This support came from stan-
dard JSR-1996. Implementation is in javax.tools package, specifically we speak about
JavaCompiler interface.

On top of this Compiler standard is seamlessly integrated Pluggable Annotation
Processing API, specified in JSR-2697. These two specifications, Java compiler and
extending annotation processor, allow us to interact with source code by changing
internal structure of java compiler. Implementation of annotations processor is also
in javax package, with api defined in javax.mirror namespace. This JSR allows us
to write our own annotation processors, which could be plugged into compilation

4. Py4j project is capable of calling Java objects from python code. More information can be
gained from http://py4j.sourceforge.net/
5. Python LogTranslator link pointing to the specific commit in history - https:
//github.com/michalxo/LogTranslator/blob/12509d5315a3487fa06972057f11fdfd41a55b80/
Log-change/logchanger.py.
6. JSR-199 specification https://jcp.org/en/jsr/detail?id=199
7. JSR-269 specification https://www.jcp.org/en/jsr/detail?id=269

38

http://py4j.sourceforge.net/
https://github.com/michalxo/LogTranslator/blob/12509d5315a3487fa06972057f11fdfd41a55b80/Log-change/logchanger.py
https://github.com/michalxo/LogTranslator/blob/12509d5315a3487fa06972057f11fdfd41a55b80/Log-change/logchanger.py
https://github.com/michalxo/LogTranslator/blob/12509d5315a3487fa06972057f11fdfd41a55b80/Log-change/logchanger.py
https://jcp.org/en/jsr/detail?id=199
https://www.jcp.org/en/jsr/detail?id=269

4. Implementation of changing logging system

process. We would call annotation processor by simply passing -processor MyAn-
notationProcessor argument to javac command. Such custom annotation processor
appears to be highly effective, when working with the state of compiler and is ca-
pable of even rewriting syntax trees, which is what we currently need. In the next
section we would like to give a short presentation of compilation process in Java,
which is an important part of this rewriting method.

4.3.2 A short introduction to Java compilation process

In this section, we would like to present a general concept of compilation of Java
source code files as described in OpenJDK documentation [19]. The compilation
process is controlled by JavaCompiler class and consists of three main parts. Process
is also depicted on Figure 4.1.

1. Parse and Enter - Source files are read and parsed into syntax trees. All
externally visible definitions are entered into the compiler’s symbol tables.

2. Process Annotations - All appropriate annotation processors are called. If
any annotation processor generate a new source or class file, the compilation
is restarted, until no new files are created.

3. Analyze and Generate - Syntax trees created by the parser are analyzed and
translated into class files. During the course of the analysis, references to
additional classes may be found. The compiler checks the source and class
path for these classes; if they are found on the source path, those files will be
compiled as well, but without annotation processing.

Figure 4.1: Java compilation process

During Parse and Enter phase, source files are read by Scanner and converted
into a stream of tokens. Parser reads these tokens and creates appropriate abstract
syntax trees using TreeMaker from subtypes of JCTree class as tree nodes. Each
such tree is visited and all encountered symbols are entered into symbol’s table. If
there are some unknown symbol references, appropriate trees has to be analyzed.

39

4. Implementation of changing logging system

JavacProcessingEnvironment is taking control from compilation process and ac-
cordingly updates JavaCompiler object if needed, during Annotation processing
phase. JavacProcessingEnvironment enters, parses and invokes relevant annotation
processors for given classes until all source files are completed.

At the end of this phase, the (un)modified JavaCompiler object is returned to
compilation process and now actual Analyze and Generate phase begins. By ana-
lyzing parsed syntax trees, class files are generated. Many references can be found
to other needed classes during analyzing process, which should be defined on class
path or source path. This whole tree analyzing and generation process is using series
of visitors in Section 4.4.4. Once a class is successfully written out as a class file,
references to symbols and trees are nulled out, to allow garbage collector to clean
up used memory.

4.3.3 Outcome of experimenting with Pluggable Annotation Processor

We were experimenting with this technique and found literature on How to abuse
JSR269 for AST rewriting [20], which looked suitable at first sight for rewriting and
generating source code files. We would create our own annotation processor, plug it
into compilation process, which would run before third phase of compilation phase
and rewrite all the log statements, definitions, imports, variables and prepare all the
needed classes and methods to generate for us.

Everything seemed quite reasonably, but on the other hand, we did not want to
dive too deep into compiler internals, manage and overwrite symbols table or use
Java compiler specific code, which could be changed in the new version of Java. That
would lead to errors and eventually cause bigger problems in future and unusability
of application. Hence this method was a dead-end for us, and we had to go one step
back to abstract syntax trees. It might not seem like a greatly invested time, but
we have learnt a lot and could leave this experiment as well. We decided to try and
have a look on a different solution then what abusing of annotation processors to
rewriting abstract syntax trees offered.

4.4 Approach using ANTLR language tool

Our latest approach was to use ANTLR - ANother Tool for Language Recognition,
which we have thought of at the very beginning, but were considering it as a big,
overpowered project which would be hard to handle in every possible aspect. After
some time, the opposite turned out to be true. What ANTLR offered us was all we
needed and still had a lot more capabilities which we have not even came across. In
the following sections, we will explain what is ANTLR, how it works and how we
used it in our LogTranslator project.

40

4. Implementation of changing logging system

4.4.1 How ANTLR works

To be able to work with ANTLR, we have to supply it with two inputs. First is a
grammar file, which defines the language we want ANTLR to speak. Second is the
file, we would like ANTLR to traverse and process. In best case, it really should be
in the same language as supplied in grammar, so ANTLR can understand what it
reads.

Formal rules of language are defined in a file with suffix ’.g4’, known as grammar.
It is primary input for ANTLR Java main program, depicted in Figure 4.2. Lexer,
tokens and parser are then generated from these given grammar rules, so patterns
could be matched by tokens and parse tree data structures built by parser.

Figure 4.2: First run of ANTLR. Generation of lexer, tokens and parser from pro-
vided grammar file input are performed by ANTLR.

Parsing, formally known as syntax analysis, is a two phase action. During first
phase, lexer through process called lexical analysis or "tokenizing" groups characters
from input, into chunk of meaningful words or symbols known as tokens. Lexer also
groups related tokens to token types like identifier, float, string, expression or any
other type, while parser is interested only in token type.

Each token consists of at least two parts:

• token type - token classes from grammar ID, INT, STRING, EXPRESSION,
Method, DeclarationField or other type,

• matched text - actual value of token depending on given token type,

• other - properties about matched text like line start, end, column start, end,
children and parent tokens, . . .

41

4. Implementation of changing logging system

Figure 4.3: Second phase of ANTLR’s run. Language recognizing process is using
generated lexer, tokens and parser to create parse tree from provided input file(s).

In the second phase of syntactical analysis, parser takes tokens from lexer and
recognizes the structure of sentence. As a result of recognition is built a data struc-
ture which represents this sentence - parse tree, (syntax tree) in ANTLR by default.

In the Figure 4.3 you can see an example of how ANTLR recognizes input file,
based on provided grammar from Figure 4.2 and use of generated lexer and parser.
Simple input as int x = 10; will force ANTLR to create a depicted green parse tree
with appropriate grammar rules.

What interests us the most is ANTLR’s ability to modify information in each
node, while traversing it either using listener or visitor pattern. We will speak more
about those patterns in following sections as well as about parse trees and examples
made by ANTLR’s visualization tool - grun.

4.4.2 Parse tree

A parse tree8 describes how a parser recognized an input sentence. They record the
sequence of rules a parser applied as well as the tokens it matches. They are used

8. Parse trees are sometimes called Syntax trees.

42

4. Implementation of changing logging system

mainly in text rewriting scenarios, syntax highlighting and error-checking [23].

Generated parse tree is very tightly connected to appropriate input grammar as
all tokens originate their name from actual rule name in grammar. The root node
is named after grammar’s starting point. Child nodes of root have their name after
possible root’s child elements and so on. In other words, in each subtree, the root
node is named after specific grammar rule [22].

Parse trees are easy to build and thanks to their regularity, ANTLR can auto-
matically build them. On the other hand, parse trees are really hard to walk and use
for transformation. They contain a lot of noise because in their nodes are matched
rules found by parser. Parse trees are also very sensitive to changes in the grammar.

To get more clear understanding of parse trees, let’s have look at following ex-
ample. In Listing 4.3 you can see a snippet of Java grammar9 of root node.

1 // Starting point for parsing a Java language file
2 compilationUnit
3 : packageDeclaration ? importDeclaration *
4 | typeDeclaration * EOF
5 ;
6

7 packageDeclaration
8 : annotation * ’package ’ qualifiedName ’;’
9 ;

10

11 importDeclaration
12 : ’import ’ ’static ’? qualifiedName (’.’ ’*’)? ’;’
13 ;
14

15 typeDeclaration
16 : classOrInterfaceModifier * classDeclaration
17 | classOrInterfaceModifier * enumDeclaration
18 | classOrInterfaceModifier * interfaceDeclaration
19 | classOrInterfaceModifier * annotationTypeDeclaration
20 | ’;’
21 ;

Listing 4.3: ANTLR’s snippet of Java grammar.

Following code in Listing 4.4 depicts an example of simple Java source code and

9. Grammatical rules for Java 1.7, were obtained from https://github.com/antlr/grammars-v4/
tree/master/java

43

https://github.com/antlr/grammars-v4/tree/master/java
https://github.com/antlr/grammars-v4/tree/master/java

4. Implementation of changing logging system

Figure 4.4: Parse Tree of shown Java code in Listing 4.4, specifically lines 5 and 6.

its appropriate method body rule part (lines number 5 to 7) of built parse tree in
Figure 4.4 by ANTLR. You can see whole parse tree on Figure A.2 in appendix. A
typical log statement is in Appendix A.1 and a nice example of leftmost derivation
left-to-right grammar parser is in Appendix A.3.

1 public class App {
2 public static void main(String [] args) {
3 double doubleVar = 12.4;
4 System .out. println ("Hello World!");
5 }
6 }

Listing 4.4: Java source code Example.

4.4.3 Abstract syntax tree

Because of too much information in parse tree nodes and sensitivity to grammar
change, internally ANTLR uses Abstract syntax trees10 as intermediate representa-

10. Also sometimes called as syntax tree or parse tree.

44

4. Implementation of changing logging system

tion. AST is a tree representation, that captures only the most important information
from input - all input tokens and the appropriate input structure. Interior nodes are
either operators or operations, instead of rule names.

In order to be proper intermediate representation, used by language tools, Ab-
stract Syntax Tree should have following properties:

• Density - they should not have unnecessary nodes,

• Convenience - should be easy to walk,

• Meaningfulness - put stress on operators, operands, and the relationship be-
tween them rather than artifacts from the grammar [23].

Simple example of AST can be seen in Figure 4.5, depicting simple statement num =
3 + 7 · y. As you can see, they do not contain any rule names from grammar. Not
even parenthesis, semicolons or other syntactic sugar, which are redundant for tree
processing. Only operators and operations. Also, they are very easy to walk and
process, due to the mentioned properties and being a linked list structure.

Figure 4.5: Simple example of Abstract Syntax Tree with following input num =
3 + 7 · y.

4.4.4 Walking the tree

When we speak about walking or traversing a tree, we think about visiting a node
in tree and performing an operation on it. Order of visiting nodes is of course im-
portant as it affects operations and final result. We could write our own depth first

45

4. Implementation of changing logging system

search algorithm, visit all nodes and perform in each node an action, what we have
to do. Or we could reuse one of the already implemented tree-walking mechanisms
offered by ANTLR. We could choose to use visitor or listener.

By default, ANTLR creates listener tree walker. Listener interface responds to
events triggered by the built-in tree walker. Such events are entering and exiting
specific rule node in syntax tree by ANTLR’s walker class ParseTreeWalker. For
example, events are listener’s implementation of methods like enterEveryRule(), ex-
itCompilationUnit(), enterPackageDeclaration(), exitFieldDeclaration() and so on.
To make use of events, we have to extend ANTLR’s generated listener for given
grammar, which is a subclass of ParseTreeListener class, by our own listener and
override specific methods (events) which we are interesting in.

In Figure 4.6 you can see how ANTLR’s listener walks the tree. Direction is
counterclockwise, because of Adaptive LL(*)11 parser, depicted by blue arrow in
figure. By yellow lightnings we have tried to show where ParseTreeWalker initiates
appropriate rulenode enter or exit event.

Figure 4.6: Depiction of walking tree by listener.

When using the listener pattern mechanism, we do not have to write our own
tree walker. On the other hand, we are unable to control the order of visited nodes.

11. Adaptive Left to right, Leftmost derivation, using non restricted, infinite tokens for lookahead.
More information about ALL(*) grammar parser can be found on http://www.antlr.org/papers/
allstar-techreport.pdf.

46

http://www.antlr.org/papers/allstar-techreport.pdf
http://www.antlr.org/papers/allstar-techreport.pdf

4. Implementation of changing logging system

In this case, we should use visitor pattern to walk the tree. We ask ANTLR to
generate visitor interface from grammar by passing -visitor argument to first run
of ANTLR, when creates appropriate lexer, parser and tokens. Generated visitor
creates one visit method per rule. One can explicitly say which node you want to
visit by overriding appropriate visit method. As a nice addition, one does not have
to wait until walker visits all nodes. They could be safely skipped over.[22]

Now when we are aware of the foundations of the work with ANTLR language
recognizing tool, we are finally prepared to create LogTranslator project.

4.4.5 LogTranslator project

With experiences gained from previous not so successful attempts, we have moved
to implementation of a translation program in Java version 1.7 using ANTLR’s lin-
guistic abilities of version 4 and in compliance with Maven project specifications.
Our example application full of logs to transform was Apache Hadoop. As a side ef-
fect, during implementation of LogTranslator we have noticed, that Hadoop uses not
one, but three separate logging systems. At the time of writing this thesis, we sup-
port log4j, log4j2, slf4j and apache commons logging frameworks. Java utils logging
should be next to implement, and user can easily add another logging framework
when needed. LogTranslator works only with Maven project, but it should not be
so hard to add capability to translate non-maven projects as well. In Figure 4.7 you
can see what LogTranslator does with given project directory input, containing at
least one logging statement.

Figure 4.7: A “big picture“ of what LogTranslator does with given Maven project
input directory.

As we have mentioned earlier in the first list in Chapter 4 of what is needed to be
done for application to work with NGMON’s logging framework, we have accordingly
broke down project into separate steps. That means, LogTranslator is divided into
eight consecutive logical steps. If any of the first four steps fails, whole application
fails. We could think of the project as a bigger script written in Java, which is easy

47

4. Implementation of changing logging system

to manage, build and update in future, due to capabilities of Maven.

1. Initialize user settings and initiate search for Java log files in given project
folder, which contain at least one non-test log method call.

2. Generate namespaces from gathered Java source code files containing log
calls.

3. Parse each file using ANTLR; gather all referenced variables, change imports,
log definition and log checker methods and log statements calls.

4. Generate new NGMON’s methods and replacements for original log method
calls from available information. Also generate GoMatch12 patterns from log
methods.

5. Prepare NGMON’s namespaces and fill them with newly generated log meth-
ods using StringTemplate tool.

6. Write all rewritten Java source code files and prepared NGMON’s namespace
files on hard drive.

7. Create dummy checker class LogGlobal and default NGMON’s SimpleLogger
class, using Log4j2. Put them into target’s Maven project directory with
generated namespaces as new Maven module.

8. Show information about changed logs, modified and generated source codes
paths.

Figure 4.8: Diagram of LogTranslator process divided into consecutive steps.

LogTranslator (LT) is started and all phases are directed by TranslatorStarter
class. At the beginning of run, TranslatorStarter initializes user settings from log-

12. GoMatch is a pattern matching project, which focuses on matching log events generated from
various applications. More information can be found on https://github.com/halafi/gomatch/
wiki

48

https://github.com/halafi/gomatch/wiki
https://github.com/halafi/gomatch/wiki

4. Implementation of changing logging system

translator.property file. These settings hold information about location of project
directory to be translated, how NGMON should generate new log methods, names-
paces, various imports and log definitions, where to put generated namespaces13,
and cover possible future changes in NGMON itself.

After initialization, search for Java files containing at least one log occurrence in
Java file in a given project home directory is started. All test related files are skipped.
We are interested in application logs only. From gathered files from finished search,
a set of empty NGMON namespaces is generated. They will serve for filling in with
newly generated methods from found log events (methods) during following phase.

Each found file is then passed to ANTLR for language processing. This part
is considered to be the heart of whole LT. We are looking for various LogFactory
and Log imports and change them and append new NGMON one’s. From now,
we are aware of which logging framework has been used in processing file class.
We also modify log definition and change all log checker methods to be called on
LogGlobal object instead of original object. In case when there is no log definition,
nor declaration in this class, we simply fall back to use of FailsafeLogger, which
acts like any logging framework. When we finally come across logging statement, we
parse all strings in it, from which will be generated NGMON’s log event (method)
name, its level and all numbers, variables, methods, new Java statements or any
used objects in it. From this information we can prepare new NGMON log event
and create replacement log. During that, we also store all possible information about
all variables referenced in this class. Focusing mainly on getting its data type and
position, and current line number in the file.

We should note, that LT does not take scopes into account, which might be a lit-
tle problem in the future when NGMON will become more evolved. But as NGMON
uses only primitive data types and string, we can safely typecast any object to string
data type, so at the end, we will not lose any information whatsoever. We also take
into account method calls and do a bit of a backtracking to find out its return type
and initiate another run of ANTLR for this or another file parsing. This phase also
rewrites original log method call by new - NGMON’s replacement log event. Class
which does all of this is named as LogTranslator to underline its importance.

This LogTranslator class copes well with log methods containing statements
like creation of new object, throwing new exceptions, mathematical expressions,
calling methods from this or other class, typecasting, simple boolean expressions

13. By default generated namespace files are placed into ${project_home}/src/main/java/log_events
directory.

49

4. Implementation of changing logging system

and partially with ternary operators.
When every found file containing log statement is successfully parsed and mod-

ified by ANTLR, all generated NGMON log events which belong to this namespace
are written into prepared namespaces class. In Listing 4.5 you can see an example
of a prepared namespace.

package log_events .org. apache . hadoop ;

import org.ngmon. logger .core. AbstractNamespace ;

public class HdfsNamespace extends AbstractNamespace {
<log event methods >

}

Listing 4.5: Example of NGMON’s empty HdfsNamespace.

When all namespaces are filled with NGMON’s new log events, they all are
written on hard drive at once. TranslatorStarter initiates generation of dummy Log-
Global class, which substitutes all isDebugEnabled(), isWarnEnabled(),.. calls and
always returns true. NGMON can easily filter these levels on its own when is asked
to. Another step is to create SimpleLogger class, which is a bridge between un-
derlying NGMON’s logging framework and NGMON itself. In LT by default, we
have chose log4j2 to be the underlying logging framework. Both these files are writ-
ten to appropriate locations in $project_home/Logtranslator/src/main/java/ with
compliance to Maven standards. By creating a new Maven module in target’s appli-
cation directory, we can easily build and incorporate newly translated LogTranslator
project into target’s application by modifying pom.xml file(s). Generation of new
namespaces, LogGlobal and SimpleLogger files is done using StringTemplate14 en-
gine. StringTemplate is a great tool for generation of source code or any formatted
text. It also can be found in the internals of ANTLR for code generation.

Final step is to show some basic information about run of LT, such as number of
processed files, paths to generated namespaces, support and information files. Other
information about run can be seen in LT’s logs directory in LogTranslator.log file.
Interestingly enough, this log file is generated by NGMON, as LT itself uses NG-
MON as default logging framework with Log4j2 backing it up.

From each modified log method we also generate a pattern, which is in compliance
with GoMatch project’s syntax. These collected patterns are used in GoMatch, to

14. StringTemplate project belongs to the same author as ANTLR has, Terrence Parr. Official
website is http://www.stringtemplate.org/.

50

http://www.stringtemplate.org/

4. Implementation of changing logging system

match log events from target’s application. They are further evaluated in comparison
with standard logging frameworks, NGMON Logger and regular expressions. More
detailed output of LogTranslator’s run can be found in Appendix A.1.

51

5 Testing LogTranslator with Apache Hadoop

5.1 Incorporating NGMON logging system into project

To be able to use NGMON logging system, you have to do the following things in
your project1:

1. Make sure, that you have successfully installed ngmon-logger-java project,
available from https://github.com/ngmon/ngmon-logger-java github repos-
itory.

2. Add NGMON Logger project as dependency into your Maven project - pom.xml
file.

3. Create custom Logger class which will extend NGMON bridging Logger class
between NGMON and underlying application. In our LogTranslator project,
we chose Log4j2 as default underlying logging framework and SimpleLogger,
which passes all log information events directly to file output.

4. Create Log instance from LoggerFactory which will use your Logger imple-
mentation or use SimpleLogger.

5. Use method calls on Log instance from already predefined namespaces for
given application or defined in your own new namespace which will log events
to your needs.
Syntax for NGMON Logger log is mentioned at the beginning of Chapter
4. It is important to create logging method in appropriate namespace which
would be named as event-name and have exactly the same formal parameters
as particular log event call.

The aim of LogTranslator is to do the steps 3. - 5. automatically. User has
to perform first two steps manually in order to successfully use NGMON logging
framework. These two steps are easy to do, but not trivial for someone, who is not
familiar with Maven building tool.

5.2 Applying LogTranslator to Apache Hadoop project

By running the LogTranslator on subproject of Apache Hadoop - MapReduce, we
changed around 850 log method calls in MapReduce and Common Project. Be-
cause of multimoduled nature of Apache Hadoop, we had to manually add into par-
ent’s Maven project dependency on LogTranslator project. Therefore, sub-modules

1. We assume, that project is using Maven build management system.

52

https://github.com/ngmon/ngmon-logger-java

5. Testing LogTranslator with Apache Hadoop

of Hadoop could correctly pick up needed dependencies on methods defined in ab-
stract namespaces. First encountered problem was the rare and unexpected usage
of complicated log methods or logger itself used in conjunction with other objects
ruining the compatibility. These issues had to be resolved manually.

In mentioned MapReduce project, we had to fix few non-conventional usages
of log object, which caused minor problems. These issues were mainly connected
with Hadoop’s customized logging and reporting framework. There were 2 unknown
methods for NGMON. The problem was, they were extending other class and log-
ger object has been defined in parent’s class, so they were in different NGMON’s
namespace. These methods had to be manually moved to correct namespace and
LogTranslator project recompiled.

Common-core project had also similar problems and sometimes missing proper
imports or log declaration. Despite the fact, that common-core is a really big project,
there were around 60 problems directly and non-directly connected with the transla-
tion of log methods. In few cases, we had to completely comment out customized log
settings or add null as argument for log object in IOutils method call, to be able to
successfully compile Apache Hadoop. All issues directly connected with translation
of another almost 900 log methods could be easily resolved in less then half an hour
of manual fixing and rebuilding project. Non-direct issues took longer time. Apache
Hadoop project has a habit of tying up loggers from production code classes and test
classes. Therefore we had to manually break this connection, as at the beginning of
LogTranslator project agreed not to translate testing methods at all. By using so-
phisticated IDE like IDEA in our case and partially compiling Maven sub-modules,
we could relatively easily overcome this problem.

After sorting out these issues, we were able to successfully compile and run
Hadoop Project with translated MapReduce and common-core sub-project.

In Listing 5.1, we can see some excerpts of logs from MapReduce’s teragen exam-
ple job. We have ran two same jobs each using different logging framework. First run
was with original logging framework, second was with NGMON Logger and trans-
lated log statements. Original log is always above NGMON’s translated log. We can
easily spot the difference and compare mutual counterpart. We should note, that
both logs were written by the same log4j2 logging framework’s formatting pattern.
That is why the time stamp and the level of both logs look the same.

53

5. Testing LogTranslator with Apache Hadoop

2014 -05 -05 15:07:48 ,908 DEBUG org. apache . hadoop . metrics2 .impl. MetricsSystemImpl - UgiMetrics , User and
group related metrics

2014 -05 -05 15:09:10 ,441 DEBUG Log4jLogger - {" Event ":{"tags":[] ,"type":" finalnamefinalde "," level ":10000 ,
"_":{" schema ":" log_events .org. apache . hadoop . Metrics2Namespace "," finalName ":" UgiMetrics "," finalDesc
":"User and group related metrics "}}}

2014 -05 -05 15:07:49 ,073 DEBUG org. apache . hadoop . security . UserGroupInformation - UGI loginUser : mtoth (
auth: SIMPLE)

2014 -05 -05 15:09:10 ,897 DEBUG Log4jLogger - {" Event ":{"tags":[] ,"type":" privilegedaction_from "," level "
:10000 ,"_":{" schema ":" log_events .org. apache . hadoop . SecurityNamespace "," testingGroups ":" mtoth (auth
: SIMPLE)"," where ":"org. apache . hadoop . mapreduce .Job. connect (Job.java :1253) "}}}

2014 -05 -05 15:07:50 ,830 INFO org. apache . hadoop . mapreduce .Job - Job job_local1482522238_0001 running in
uber mode : false

2014 -05 -05 15:09:12 ,614 DEBUG Log4jLogger - {" Event ":{"tags":[" methodCall "],"type":"
job_running_uber_mode "," level ":20000 ,"_":{" schema ":" log_events .org. apache . hadoop .
MapreduceNamespace "," jobId ":" job_local1281492327_0001 "," isUber ": false }}}

2014 -05 -05 15:07:50 ,836 INFO org. apache . hadoop . mapreduce .Job - Job job_local1482522238_0001 completed
successfully

2014 -05 -05 15:09:12 ,620 DEBUG Log4jLogger - {" Event ":{"tags":[] ,"type":" job_completed_successfully ","
level ":20000 ,"_":{" schema ":" log_events .org. apache . hadoop . MapreduceNamespace "," jobId ":"
job_local1281492327_0001 "}}}

Listing 5.1: Example of two MapReduce’s teragen example job runs. First using
original logging framework, second with NGMON Logger.

5.3 Performance testing of translated application

This chapter compares the performance of Apache Hadoop with the original log-
ging framework and Apache Hadoop with NGMON translated logging system. We
conducted 4 simple tests using example jobs from Hadoop’s Mapreduce subproject.
Each of the tests was run 5 times on Hadoop with default logging framework, with
NGMON logging framework using default Log4j2’s file appender and third run using
asynchronous appender. As a timing device we used GNU/Linux command time, fo-
cusing on real output value, which clocks elapsed real time (in seconds). Tests were
conducted on a GNU/Linux Ubuntu 14.04 server running on AMD Opteron Proces-
sor 4284 quad-core with 8GB of RAM memory.

First example wordcount, expects a text file input and gathers the count of each
unique word found in it. We have used 31MB big text file, which has been con-
catenated from various books, obtained from Project Gutenberg2 website. Results
showed, that examples ran with NGMON logger were slower by 7.93%, making it in
average 1.6066 seconds longer then the same test without NGMON logger. Average
non-NGMON example run for 18.6392 second and with NGMON 20.2458 seconds.

2. Project Gutenberg’s website http://www.gutenberg.org/ebooks/

54

http://www.gutenberg.org/ebooks/

5. Testing LogTranslator with Apache Hadoop

When NGMON uses asynchronous appender, results were even worse by 10.47%
making it almost whole 2 seconds. On Chart 5.1 and Table 5.1 you can see the in-
dividual results gained from this test.

WordCount 1 2 3 4 5 Average Diff
Hadoop 18.062 19.044 18.04 19.044 19.006 18.639 -
NGMON 20.526 20.16 20.13 20.181 20.232 20.245 1.606
NGMON Async 20.887 20.537 20.509 20.511 20.516 20.592 1.952

Table 5.1: Apache Hadoop’s Wordcount example test run with Hadoop’s default log-
ging framework, NGMON logger and NGMON logger using asynchronous appender.

Figure 5.1: Apache Hadoop’s Wordcount example test

As for the second test from Mapreduce’s example jobs, the approximation of
π value by quasi Monte-Carlo method has been chosen. Test used 10 maps and
10 000 000 000 samples for approximation. Results were more positive for NGMON
logger this time, in comparison with gained results from first test. NGMON logger
was slowing down the application by 3.67% which was around 14.5 seconds by av-
erage. When using asynchronous appender, Hadoop’s job was slower by another 2.1
seconds. Jobs with NGMON were slower by 3.8% and 4.3% respectively. Average
execution time spent by example job without NGMON logger was 380 seconds com-
paring to 394.5 seconds using NGMON logger. You can see test runs on Figure 5.2

55

5. Testing LogTranslator with Apache Hadoop

and Table 5.2.

Pi (Monte-Carlo) 1 2 3 4 5 Average Diff
Hadoop 378.82 380.86 383.87 378.72 377.79 380.01 -
Hadoop NGMON 397.80 395.61 392.77 392.84 393.63 394.53 14.517
NGMON Async 403.34 395.64 397.75 393.84 392.68 396.65 16.637

Table 5.2: Apache Hadoop’s Pi approximation example test run with Hadoop’s de-
fault logging framework, translated NGMON logger and NGMON logger using asyn-
chronous appender.

Figure 5.2: Apache Hadoop’s Wordcount example test

Teragen and Terasort example jobs were chosen as third and fourth test. Tera-
gen generates data of given size of rows, where one row is 100 bytes big. Generated
output data are then handed to Terasort test, which sorts these random data. There
is also a third Mapreduce’s example job - Teravalidate, which validates the sorted
data, but we have not used it for our testing purposes of NGMON Logger. We tested
Teragen when creating 50000000 rows of data, a 5 GB file.

Our results show, that when using NGMON, generation of 5 GB file was a bit
slower. but not as significantly as in previous tests. In both cases, generation was
slower by 4.3%, which makes 4.3 seconds then when using default logging frame-

56

5. Testing LogTranslator with Apache Hadoop

work. Average times of running Teragen job were 100.25 for non-NGMON job and
104.5 seconds for Hadoop with NGMON. In Figure 5.3 and Table 5.3 you can see
an individual results of generating data files test.

Teragen 1 2 3 4 5 Average Diff
Hadoop 100.28 100.041 99.96 100.05 100.92 100.25 -
Hadoop NGMON 102.00 111.09 100.99 102.62 106.23 104.591 4.338
NGMON Async 107.74 104.05 102.16 102.91 105.90 104.55 4.304

Table 5.3: Apache Hadoop’s Teragen example test run, generating 1GB file with
Hadoop’s default logging framework, translated NGMON logger and NGMON logger
using asynchronous appender.

Figure 5.3: Apache Hadoop’s Teragen example test

As our last, fourth test, we fed Terasort with 1 GB file and let it sort this input
file. Average times of sorting were 55.7 for default NGMON logger and 67.2 seconds
for NGMON using asynchronous appender, versus 57.3 seconds of non-translated
Hadoop job. That means, job execution of translated Hadoop application using NG-
MON Logger was 2.76% slower for non-asynchronous appender and significantly
slower by 20.6% for asynchronous appender. You can see the test results on Table
5.3 and Figure 5.4

57

5. Testing LogTranslator with Apache Hadoop

Terasort 1 2 3 4 5 Average Diff
Hadoop 76.62 54.987 47.787 49.287 50.015 55.739 -
Hadoop NGMON 67.691 53.882 52.597 58.958 53.489 57.323 1.584
NGMON Async 99.621 70.574 58.703 55.59 51.66 67.229 11.490

Table 5.4: Apache Hadoop’s Terasor example test run sorting 1GB data file with
Hadoop’s default logging framework, translated NGMON logger and NGMON logger
using asynchronous appender.

Figure 5.4: Apache Hadoop’s Terasort example test

We think, that some of these results should not be blind-fully trusted as Apache
Hadoop uses its own logging framework, which might lead to not as objective results.
We also can see, that cached data could result in another test quickness, despite
our efforts to make tests as isolated as possible. We recommend further testing on
application(s), which does use only native logging systems like those, mentioned in
Chapter 2.1. From test execution results between NGMON’s two appenders, we can
clearly see, that using default log4j2’s appender is generally faster or at least as
fast as using asynchronous appender. Apart from Hadoop’s custom logging system,
our results were as we had expected. It should logically take a bit longer to process
inserted log to JSON and write it out, than not doing this operation at all.

58

6 Conclusion

On our way to find and implement the most manageable and suitable solution to
translate the log method statements, there were three stages. Collecting information
about currently used logging frameworks, looking for possibilities and experiences
with various code rewriting tools, as well as implementing and testing the semi-
automatically translated application.

Chapter 2 provides a short introduction into the evolution of Java logging frame-
works. Starting from the first proposal of JSR 47: Logging API Specification and
implementation in java.util.logging package of Java 1.4, through advanced frame-
works like Log4j, Apache Commons Logging, Slf4j or Log4j2. That was followed by
discussion about benefits of the structured logging over the natural language log-
ging, with presenting a Common Event Expression and New Generation Monitoring
Logger project.

In the further chapters we consider options of how to rewrite source code, which
is not running in Java Virtual Machine1. Possible options were completely manual
rewriting or semi-automated rewriting of source code combined with hand rewriting
or rewriting by means of simple automated script. More advanced options were ma-
nipulating the structure of a syntax tree with the help of Eclipse Java Development
Tools or Java Compiler API in conjunction with Pluggable Annotation Processors.
Finally, we chose the ANother Tool for Language Recognition tool, which allowed
us to implement whole log statements rewriting application and make it easily ex-
tendable.

The second half of thesis displays the usage of implemented application on
Apache Hadoop. We have successfully proved, that we are able to change some
parts2 of Java application, which is using Maven management and build tool. Re-
grettably, it has to be admitted, that for the moment, it does not seem possible to
fully automatically convert whole application to NGMON Logger’s framework with-
out performing some minor alterations to original source code. Especially in cases,
when application is complex, which means that it consists of classes, reusing loggers
from other classes, which are defined in different packages, or loggers used also in
tests classes, or in cases, when log statement expressions are very complex and use
some badly designed constructions, it is needed to fix these problems manually. Also,
new problems arise when target application has its own logging framework, which

1. That is the reason, why we have not mentioned anything about Reflection API.
2. Whole application can be also successfully translated to NGMON Logger’s statements syntax.

59

6. Conclusion

is hard to work with. However as we have said before, LogTranslator can convert
around 4700 log statements in about 15 seconds, which is a great achievement. On
the contrary, sometimes manual work has to be done, in order to successfully compile
and run target application.

Both original Apache Hadoop and translated Apache Hadoop using NGMON
Logger have been tested and compared, just to confirm our hypothesis, that trans-
lated application has to run for a longer time period, due to inserting of individual
logs into NGMON log processor and outputting it in JSON format. Although, this
has to be admitted, that it might be useful to similarly test a different application,
which does not use any customized logging framework as Apache Hadoop does. In
our opinion, the results would be more evident and transparent.

We believe, that goals set in the beginning of the thesis have been fulfilled and the
designed LogTranslator application can be successfully used and further improved,
if needed. LogTranslator can be extended by supporting Java Logging API, various
new expressions in log methods, which we did not handle, since Apache Hadoop did
not contain them. After all, natural language is very rich, and human’s ingenuity is
never-ending as well.

60

Bibliography

[1] JavaTM Logging Overview, http://docs.oracle.com/javase/7/docs/
technotes/guides/logging/overview.html, Updated November 26 2001,
Oracle and/or its affiliates, [cited 15.11.2013].

[2] Chua Hock-Chuan, Java Programming Java Logging Framework. http://www.
ntu.edu.sg/home/ehchua/programming/java/JavaLogging.html, November
2012, [cited 15.10.2013].

[3] Apache Commons Logging, http://commons.apache.org/proper/
commons-logging/guide.html, Apache Software Foundation, The, [cited
15.11.2013].

[4] Optimization: Don’t do it. . . The compiler will!. http://javamoods.blogspot.
cz/2010/02/optimization-dont-do-it-compiler-will.html, February 2,
2010, [cited 17.11.2013].

[5] Ceki Gülcü, Short introduction to log4j. http://logging.apache.org/log4j/
1.2/manual.html, March 2002, [cited 15.10.2013].

[6] Logback Project. http://logback.qos.ch, Quality Open Software, [cited
8.12.2013].

[7] Apache Log4j 2, User’s Guide. http://logging.apache.org/log4j/2.x/
log4j-users-guide.pdf, Apache Software Foundation, The, version 2.0-beta9,
[cited 28.11.2013].

[8] Martin Thompson, Dave Farley, Michael Barke, Patricia Gee, Andrew Stewart,
Disruptor: High performance alternative to bounded queues for exchanging data
between concurrent threads. http://lmax-exchange.github.io/disruptor/
files/Disruptor-1.0.pdf, May 2011.

[9] Ceki Gülcü et. al, Simple Logging Facade for Java (SLF4J). http://www.slf4j.
org/manual.html, Quality Open Software, [cited 10.12.2013].

[10] M. GonÇalves, M. Luo, R. Shen, M. Ali, and E. Fox, “An xml log standard and
tool for digital library logging analysis,” in Research and Advanced Technology
for Digital Libraries (M. Agosti and C. Thanos, eds.), vol. 2458 of Lecture Notes
in Computer Science, 2002.

[11] Common Event Expression, http://cee.mitre.org/. The MITRE Corpora-
tion, [cited 4.1.2013].

61

http://docs.oracle.com/javase/7/docs/technotes/guides/logging/overview.html
http://docs.oracle.com/javase/7/docs/technotes/guides/logging/overview.html
http://www.ntu.edu.sg/home/ehchua/programming/java/JavaLogging.html
http://www.ntu.edu.sg/home/ehchua/programming/java/JavaLogging.html
http://commons.apache.org/proper/commons-logging/guide.html
http://commons.apache.org/proper/commons-logging/guide.html
http://javamoods.blogspot.cz/2010/02/optimization-dont-do-it-compiler-will.html
http://javamoods.blogspot.cz/2010/02/optimization-dont-do-it-compiler-will.html
http://logging.apache.org/log4j/1.2/manual.html
http://logging.apache.org/log4j/1.2/manual.html
http://logback.qos.ch
http://logging.apache.org/log4j/2.x/log4j-users-guide.pdf
http://logging.apache.org/log4j/2.x/log4j-users-guide.pdf
http://lmax-exchange.github.io/disruptor/files/Disruptor-1.0.pdf
http://lmax-exchange.github.io/disruptor/files/Disruptor-1.0.pdf
http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html
http://cee.mitre.org/

6. Conclusion

[12] Tovarňák, Daniel, Tomáš Pitner, Towards Multi-Tenant and Interoperable Mon-
itoring of Virtual Machines in Cloud. In Andrei Voronkov, Viorel Negru, Tetsuo
Ida, Tudor Jebelean, Dana Petcu, Stephen Watt, Daniela Zaharie. Proceedings of
14th International Symposium on Symbolic and Numeric Algorithms for Scien-
tific Computing., Los Alamitos (CA): IEEE Computer Society, 2012. s. 436-442,
ISBN 978-1-4673-5026-6.

[13] Tovarňák, Daniel, Tomáš Pitner, Distributed Event-driven Model for Intelligent
Monitoring of Cloud Datacenters. In Zavoral, Filip and Jung, Jason J. and Bad-
ica, Costin. Intelligent Distributed Computing VII. Cham: Springer International
Publishing Switzerland, 2013. ISBN 978-3-319-01570-5.

[14] Tovarňák, Daniel, Tomáš Pitner, Andrea Vašeková, Svatopluk Novák, Struc-
tured and Interoperable Logging for the Cloud Computing Era: The Pitfalls and
Benefits. In Proceedings of 6th IEEE/ACM International Conference on Utility
and Cloud Computing, 2013.

[15] Miloslav Trmač, Do Not Believe in Structured Logging. online
http://carolina.mff.cuni.cz/~trmac/blog/2011/structured-logging,
[cited 10.1.2013].

[16] Scott Chacon, PRO Git. online http://git-scm.com/book, [cited 4.11.2013].

[17] Authors from tutorialspoint.com, Apache Maven Tutorial. online http://www.
tutorialspoint.com/maven, [cited 9.11.2013].

[18] Tim O’Brien, John Casey, Brian Fox, Bruce Snyder, Jason Van Zyl, Eric Red-
mond, Maven: The Definitive Guide. Online version, Sonatype, Inc., Palo Alto,
CA 94301, 2006 – 2008.

[19] Oracle Corporation, Compilation Overview. online http://openjdk.java.
net/groups/compiler/doc/compilation-overview/, [cited 5.4.2014].

[20] David Erni, Adrian Kuhn, The Hacker’s Guide to Javac. online http://scg.
unibe.ch/archive/projects/Erni08b.pdf, University of Bern, March 2008.

[21] Tom White, Hadoop: The Definitive Guide. O’Reilly Media Inc., 1005 Graven-
stein Highway North, Sebastopol, CA 95472, 1st Edition, 2009.

[22] Terrence Parr, Definitive ANTLR 4 Reference, The. Pragmatic Bookshelf, 2nd
Edition, 2012.

[23] Terrence Parr, Language Implementation Patterns. Pragmatic Bookshelf, P1.0
printing, December 2009.

62

http://carolina.mff.cuni.cz/~trmac/blog/2011/structured-logging
http://git-scm.com/book
http://www.tutorialspoint.com/maven
http://www.tutorialspoint.com/maven
http://openjdk.java.net/groups/compiler/doc/compilation-overview/
http://openjdk.java.net/groups/compiler/doc/compilation-overview/
http://scg.unibe.ch/archive/projects/Erni08b.pdf
http://scg.unibe.ch/archive/projects/Erni08b.pdf

6. Conclusion

[24] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional,
1st Edition, November 1994.

63

A Supplement

A.1 Appendix A

Figure A.1: Typical log method statements generated by ANTLR, which have to be
translated into NGMON’s syntax.

64

A. Supplement

Figure A.2: ANTLR’s parsed tree of App.java source code 4.4

65

A. Supplement

Figure A.3: A fine example of leftmost derivation in left-to-right grammar parser
- ALL(*), which uses ANTLR by default. For full scale image see picture on
the following link https://github.com/michalxo/LogTranslator/blob/master/
antlr4_left_recursion.png.

66

https://github.com/michalxo/LogTranslator/blob/master/antlr4_left_recursion.png
https://github.com/michalxo/LogTranslator/blob/master/antlr4_left_recursion.png

A. Supplement

A.2 Appendix B

Example of LogTranslator’s output run. On the first line is default log method found
in Java class. Second line is NGMON Logger’s substitution method for original log
method. On the third line is generated NGMON Logger’s method declaration for
NGMON’s log method. Fourth line contains generated Go-Match pattern and last
fifth line is path to given file.

LOG.warn(" Inprogress znode "+ child +" refers to a ledger which is empty . This occurs when the NN"+"
crashes after opening a segment , but before writing the"+" OP_START_LOG_SEGMENT op. It is safe to
delete ."+" MetaData ["+l. toString ()+"]")

LOG. inprogress_znode_refers_ledger_which_emp (child , String . valueOf (l. toString ())).tag(" methodCall ").warn
()

public AbstractNamespace inprogress_znode_refers_ledger_which_emp (String child , String lMethodCall)
org. apache . hadoop . contribnamespace . inprogress_znode_refers_ledger_which_emp ## Inprogress znode %{ STRING :

child } refers to a ledger which is empty . This occurs when the NN crashes after opening a segment ,
but before writing the OP_START_LOG_SEGMENT op. It is safe to delete . MetaData [%{ STRING :

lMethodCall }]
/home/ mtoth /tmp/ rewritting /hadoop -common -pure/hadoop -hdfs - project /hadoop -hdfs/src/ contrib / bkjournal /src/

main/java/org/ apache / hadoop / contrib / bkjournal / BookKeeperJournalManager .java

LOG. error (" Interrupted while purging "+l,ie)
LOG. interrupted_while_purging (l. toString () , ie. toString ()). error ()
public AbstractNamespace interrupted_while_purging (String l, String Exception)
org. apache . hadoop . contribnamespace . interrupted_while_purging ## Interrupted while purging %{ STRING :l} %{

STRING : Exception }
/home/ mtoth /tmp/ rewritting /hadoop -common -pure/hadoop -hdfs - project /hadoop -hdfs/src/ contrib / bkjournal /src/

main/java/org/ apache / hadoop / contrib / bkjournal / BookKeeperJournalManager .java

LOG. error (" Couldn ’t delete ledger from bookkeeper ",bke)
LOG. couldnt_delete_ledger_from_bookkeeper (bke. toString ()). error ()
public AbstractNamespace couldnt_delete_ledger_from_bookkeeper (String Exception)
org. apache . hadoop . contribnamespace . couldnt_delete_ledger_from_bookkeeper ## Couldn ’t delete ledger from

bookkeeper %{ STRING : Exception }
/home/ mtoth /tmp/ rewritting /hadoop -common -pure/hadoop -hdfs - project /hadoop -hdfs/src/ contrib / bkjournal /src/

main/java/org/ apache / hadoop / contrib / bkjournal / BookKeeperJournalManager .java

LOG. error (" Error deleting ledger entry in zookeeper ",ke)
LOG. error_deleting_ledger_entry_zookeeper (ke. toString ()). error ()
public AbstractNamespace error_deleting_ledger_entry_zookeeper (String Exception)
org. apache . hadoop . contribnamespace . error_deleting_ledger_entry_zookeeper ## Error deleting ledger entry in

zookeeper %{ STRING : Exception }
/home/ mtoth /tmp/ rewritting /hadoop -common -pure/hadoop -hdfs - project /hadoop -hdfs/src/ contrib / bkjournal /src/

main/java/org/ apache / hadoop / contrib / bkjournal / BookKeeperJournalManager .java

LOG.warn (" ZNode : "+ legderMetadataPath +" might have finalized and deleted ."+" So ignoring NoNodeException
.")

LOG. znode_might_have_finalized_and_deleted_i (legderMetadataPath).warn ()
public AbstractNamespace znode_might_have_finalized_and_deleted_i (String legderMetadataPath)
org. apache . hadoop . contribnamespace . znode_might_have_finalized_and_deleted_i ## ZNode : %{ STRING :

legderMetadataPath } might have finalized and deleted . So ignoring NoNodeException .
/home/ mtoth /tmp/ rewritting /hadoop -common -pure/hadoop -hdfs - project /hadoop -hdfs/src/ contrib / bkjournal /src/

main/java/org/ apache / hadoop / contrib / bkjournal / BookKeeperJournalManager .java

LOG. trace (" Setting maxTxId to "+ maxTxId)
LOG. setting_maxtxid (maxTxId). trace ()
public AbstractNamespace setting_maxtxid (long maxTxId)
org. apache . hadoop . contribnamespace . setting_maxtxid ## Setting maxTxId to %{ LONG: maxTxId }
/home/ mtoth /tmp/ rewritting /hadoop -common -pure/hadoop -hdfs - project /hadoop -hdfs/src/ contrib / bkjournal /src/

main/java/org/ apache / hadoop / contrib / bkjournal / MaxTxId .java

Listing A.1: Excerpt from LogTranslator’s run output, which shows orginal log
statement method and its appropriately generated counterparts.

67

List of Figures

2.1 Structure model of Java Logging API. 9
2.2 Log4j2 asynchronous logging throughput comparison chart with

other logging frameworks. 15
2.3 Various usage bindings for slf4j framework. Image taken from slf4j’s

manual[9]. 16
2.4 Slf4j bound to logback-classic with redirection of JCL, log4j and

java.util.logging. Image taken from Bridging legacy APIs
http://www.slf4j.org/legacy.html. 17

2.5 Event lifecycle in CEE standard using three main fragments -
Requirements, Events and Records. Image taken from About CEE -
Archive http://cee.mitre.org/about/. 22

2.6 Data flow architecture of New Generation Monitoring. 23

4.1 Java compilation process 39
4.2 First run of ANTLR. Generation of lexer, tokens and parser from

provided grammar file input are performed by ANTLR. 41
4.3 Second phase of ANTLR’s run. Language recognizing process is using

generated lexer, tokens and parser to create parse tree from provided
input file(s). 42

4.4 Parse Tree of shown Java code in Listing 4.4, specifically lines 5 and
6. 44

4.5 Simple example of Abstract Syntax Tree with following input
num = 3 + 7 · y. 45

4.6 Depiction of walking tree by listener. 46
4.7 A “big picture“ of what LogTranslator does with given Maven

project input directory. 47
4.8 Diagram of LogTranslator process divided into consecutive steps. 48

5.1 Apache Hadoop’s Wordcount example test 55
5.2 Apache Hadoop’s Wordcount example test 56
5.3 Apache Hadoop’s Teragen example test 57
5.4 Apache Hadoop’s Terasort example test 58

A.1 Typical log method statements generated by ANTLR, which have to
be translated into NGMON’s syntax. 64

A.2 ANTLR’s parsed tree of App.java source code 4.4 65

68

http://www.slf4j.org/legacy.html
http://cee.mitre.org/about/

A. Supplement

A.3 A fine example of leftmost derivation in left-to-right grammar parser
- ALL(*), which uses ANTLR by default. For full scale image see
picture on the following link https://github.com/michalxo/
LogTranslator/blob/master/antlr4_left_recursion.png. 66

69

https://github.com/michalxo/LogTranslator/blob/master/antlr4_left_recursion.png
https://github.com/michalxo/LogTranslator/blob/master/antlr4_left_recursion.png

