
Platforma průmyslové spolupráce

CZ.1.07/2.4.00/17.0041

Název

Automatic pull request integration

Popis a využití

• nástroj pro jednodušší hodnocení oprav domácích úkolů v jazyce Java

• výuka: pokročilá Java

Jazyk textu

• anglický

Autor (autoři)

• Jan Brázdil

Oficiální stránka projektu:

• http://lasaris.fi.muni.cz/pps

Dostupnost výukových materiálů a nástrojů online:

• http://lasaris.fi.muni.cz/pps/study-materials-and-tools

http://lasaris.fi.muni.cz/pps
http://lasaris.fi.muni.cz/pps/study-materials-and-tools

Contents

1 Introduction . 3
1.1 Structure of This Thesis 3

2 Tools and Technologies . 5
2.1 Git . 5
2.2 Continuous integration 7
2.3 Jenkins CI . 9
2.4 Code Review Tools For Git 10
2.5 Tools for Automatic Pull Request Testing 12

3 Analysis . 13
3.1 Requirements . 13
3.2 JBoss status . 14
3.3 GitHub . 15
3.4 Jenkins CI . 19

4 Implementation . 21
4.1 GitHub API . 21
4.2 Jenkins plugin . 25
4.3 GitHub Pull Request Builder 27
4.4 Usage . 30

5 Conclusion . 33
A Dictionary . 39
B Archive content . 41
C Git branching model . 43
D List of patches for github-api plugin 45

1

Chapter 1

Introduction

In software development it is good to know if all parts of a project
work as desired. It is also good to know if all the parts work together.
When many developers are collaborating on a project there is usually
a need for code review, especially in open source projects. The review
process can be complicated and time consuming.

Goal of this work is to facilitate this process by development of
a tool that can reduce the time needed to review code changes. When
new changes are automatically tested a reviewer does not have to
spend his time on the wrong changes. And if the test feedback is
automatically given to the author of the changes he can fix all issues
immediately without the need to wait for the review.

This thesis examines tools for code review and existing tools for
automatic testing of proposed code changes. It also describes devel-
opment of a tool for automatic testing of GitHub Pull Requests in
Jenkins CI and for reporting the results back to GitHub. The tool is in
a form of Jenkins plugin and is named GitHub Pull Request Builder.

As this work is done in cooperation with Red Hat the focus was
on open source technologies and the resulting tool is released under
open source license.

1.1 Structure of This Thesis

The thesis is divided into five chapters.
This is Chapter 1. There is introduction to this thesis, its goals and

structure.
In Chapter 2 important technologies are introduced and basics of

Continuous Integration are explained. In this chapter tools for code
review and existing tools for automatic Pull Request testing are pre-

3

1. INTRODUCTION

sented.
In Chapter 3 requirements for a new tool for automatic Pull Re-

quest testing are described and existing JBoss internal tool is ana-
lyzed. There is also deeper analysis of GitHub and Jenkins CI in this
chapter.

Chapter 4 describes implementation of the GitHub Pull Request
Builder. Library for the GitHub API that was used for communicat-
ing with GitHub is described. Also specifics of the Jenkins CI plugin
development are described. Lastly architecture and function of the
GitHub Pull Request Builder are presented.

In the last Chapter 5, there results of this thesis are summarized.

4

Chapter 2

Tools and Technologies

Technologies and tools that are important for this work are described
in this chapter. First of all a source code management system called
Git is introduced. Continuous Integration is explained afterwards
and Jenkins CI, one of the systems for Continuous Integration, is in-
troduced. After that code review tools for git are described. Existing
tools for the preintegration testing are presented in the end of this
chapter.

2.1 Git

Git is a version and source code management system. Unlike other
SCM systems (e.g. CVS, Subversion and others), git is distributed
and supports heavy branching. Git was designed for open source
projects by Linus Torvalds.

One of main advantages of git is in its branching model. Creating,
merging and working with branches is fast and easy. Branches can be
used for easy switching of context, for example in situations where
developer works on a new feature and is asked to quickly fix newly
discovered bug. Separation of development and stable branches and
keeping branches with older but still supported version of project
is also possible. Developing in multiple feature branches not inter-
fering with each other and merging only finished work and other
techniques can be done using branches too.1 [1]

The fact that git is distributed has also many advantages. Every
git user clones the whole repository instead of checking out just the
current state. This can be seen as disadvantage as initial clone can

1. Example of git branching model is on Figure C.1

5

2. TOOLS AND TECHNOLOGIES

take longer then when using e.g. SVN, however this operation is usu-
ally done only once. Also the cloned repository is slightly bigger in
size but it is effectively backed up at every developer’s computer and
as most of the operations are done locally, they are really fast. [2] Also
the distributed nature of git enables projects to use various kinds of
workflows.

Figure 2.1: Git workflow with integration manager. [3]

A centralized workflow can be used when every developer has
rights to contribute to a project directly. In world of open source other
workflows are common. In one such workflow (Figure 2.1) every de-
veloper has his own repository and their changes are put together by
integration manager who pulls the changes from developers’ repos-
itories and integrate them in to one canonical repository (also called
blessed repository). The developers then pull all changes from this
repository.

Figure 2.2: Git workflow in Linux kernel. [3]

6

2. TOOLS AND TECHNOLOGIES

Linux kernel is using another workflow (Figure 2.2) where peo-
ple participating on the project make a hierarchy of responsibility.
There are people called lieutenants who are responsible for their part
of project and they gather relevant changes from developers. Per-
son called a dictator then gathers changes from the lieutenants and
pushes them in the canonical repository. [3]

Consistency checks are another git advantage. Git is using SHA-1
hashing to mark its objects like data blobs or commits. Every com-
mit’s information like author, timestamp, changes and commit’s par-
ent(s) hashes are hashed together and the resulting hash is identifier
of the commit. If you know the commit hash is correct you can verify
your whole git history if it is correct. [4]

Git branches are identified by a refspec. For example refspec of
master branch is refs/heads/master. Refspec can define names-
pace. For example QA team can have branches in refspec:

refs/heads/qa/*

The QA team can then specify that they want to download only
branches in their namespace. [5]

2.2 Continuous integration

Process of software integration is problematic. As long as a project is
small (e.g. only one person works on it) integration is not big prob-
lem. However as the project grows, more people are working on
it and it is becoming more complex, integration becomes essential.
Common behavior in software development is that integration of in-
dividual components of the project happens late in the development
process. That brings a lot of disadvantages.

The project is often in broken state because nobody is forced to
test that everything works together. Only separate parts are tested.
Issues that will be discovered during an integration are often in the
project for long time and fixing of these issues can be time consuming
and expensive. The process of integration itself is not tested and can
be error-prone and bring another issues. Estimation of time needed
for integration and deployment of the project is very difficult.

Continuous Integration is a practice that started as part of ex-
treme programming. Continuous Integration works on presumption

7

2. TOOLS AND TECHNOLOGIES

Figure 2.3: Continuous Integration workflow.

that if it is needed to prevent difficulties which rise from late integra-
tion, integration must be done often. In Continuous Integration that
means integration should be done continuously – with every new
change.

To be able to achieve this, specific requirements have to be met.
The source codes need to be in a version control repository and de-
velopers must commit small changes regularly. All integration pro-
cesses must be automated. When a new commit is pushed into repos-
itory, automated build of the sources must start. Then every part of
the project must be tested by unit tests and integration tests. Good
code and functionality test coverage is a must. Whenever a part of
the process fails, it must be immediately reported to developers and
they have to fix the issue promptly.

When all the requirements are met, Continuous Integration brings
benefits. Developers have regular feedback about quality of the code,
the project is in runnable state most of the time and issues are discov-
ered soon and are easier to locate. [6]

“Continuous Integration is a software development practice where mem-
bers of a team integrate their work frequently, usually each person integrates
at least daily – leading to multiple integrations per day. Each integration is

8

2. TOOLS AND TECHNOLOGIES

verified by an automated build (including test) to detect integration errors
as quickly as possible. Many teams find that this approach leads to signifi-
cantly reduced integration problems and allows a team to develop cohesive
software more rapidly.” [7]

When there are many people contributing to open source project,
there is usually need for validating patches sent by community. The
patches usually need to complain to specific rules (e.g. style rules)
and must not break the application. Human validation is usually
long and risk-prone process and in the end when the patch is merged
to the project it can still break the project. It is a good idea to auto-
mate this process as well and use Continuous Integration even on
the patches. The same process that is used for Continuous Integra-
tion can be performed on the source base with the patch applied. If
the process passes, developer can then review the patch.

There are numerous tools and systems for Continuous Integra-
tion and they are easy to install and use. [8] There are a lot of com-
mercial and several open source systems for Continuous Integration.
Most common open source are Jenkins CI and CruiseControl. Also
Travis CI is a free and open source service for Continuous Integra-
tion.

2.3 Jenkins CI

Jenkins is an open source system for Continuous Integration. It sup-
ports automated building and testing of projects. Jenkins, in the past
known as Hudson, was created by Kohsuke Kawaguchi who also
created a number of plugins and libraries around the project. Jenkins
is easily extensible with plugins. Currently2 there is over 800 plug-
ins for many various tasks like source code management, build trig-
gering, notifying and reporting, slave launching and controlling, up-
loading artifacts, integration to other sites and tools and a lot more.

Jenkins is written in Java but it also supports other languages and
technologies including Ruby, PHP, .NET, Groovy etc. Jenkins is easy
to start using in a few minutes. Jenkins is also very well supported
and has big community. The development is fast and new releases
are coming out weekly.

2. 27. 2. 2013

9

2. TOOLS AND TECHNOLOGIES

More information about Jenkins architecture is in section 3.4 and
creation of Jenkins plugin is described in section 4.2.

2.4 Code Review Tools For Git

Tools for code review that work with git are presented in this sec-
tion. The possibilities of integration of these tools with systems for
Continuous Integration are examined.

2.4.1 Gerrit

Gerrit is an open source tool for hosting repositories and for code re-
view. Developers can push code changes into special branches when
using Gerrit. The change is then shown in web UI waiting for a re-
view. A reviewer then checks the change and can accept the change
or abandon it.

Gerrit is a fork of Rietveld, another tool for code review. Both of
them are good for centralized repositories and Gerrit supports access
control lists. Gerrit is written in Java and provides API for plugin
development. There are Jenkins plugins for integration with Gerrit
making automatic testing of changes possible. [9]

2.4.2 GitHub

GitHub is a service for hosting git repositories. GitHub has a web
code browser and allows commenting on the code. Users can eas-
ily create their own copy of project repository by using fork button.
Then they can modify the code in the forked repository and promote
the changes to the original project repository as a Pull Request. Then
project maintainer can verify the change and merge the Pull Request
into the project code. GitHub also supports issue tracking and wiki
pages.

GitHub is not open source but open source projects can be hosted
there for free. For other projects GitHub provides paid private reposi-
tories and offers enterprise GitHub for in-house installations. GitHub
is very popular – it has over 3 millions of users. [10]

GitHub provides good REST API allowing even more operations

10

2. TOOLS AND TECHNOLOGIES

then which can be done in web UI. There are tools allowing testing
of Pull Requests like BuildHive and Travis CI.

2.4.3 GitLab

GitLab is a code browser and a code review tool inspired by GitHub.
It is an open source project with a lot3 of contributors. It is in rapid
development – new versions are released monthly. GitLab used Gi-
tolite for repository hosting but has switched to their own system
called GitLab-shell.4 [11, 12]

GitLab is aiming for company use cases. It does not have forks
and Pull Requests but provides functionality called Merge Requests
– when a development branch is ready for integration a developer
can create Merge Request indicating that it is ready for review and
merge into the master branch. Reviewers can comment and vote on
the Merge Request and if merge can be done without conflicts it can
be done by clicking on one button.

GitLab is written in Ruby. It provides REST API for basic oper-
ations. There is a Jenkins plugin for integration with GitLab but it
supports only testing new commits in specified branch not testing
merge requests. [13]

2.4.4 Other Tools For Code Review

Barkeep is a simple and easy to use open source code review system
with support for inline comments. It provides simple API that can be
used for reporting from Continuous Integration systems. [14]

Phabricator is a suite of web application with support for code
review, code browsing, issue tracking and many other features. It is
open source and it provides API that can be used for integration with
Continuous Integration systems. [15]

Review Board is an open source tool for code review with web
API. There is also Jenkins plugin for integration with Review Board.
[16]

3. From 26. 3. 2013 to 26. 4. 2013 there were 67 contributors
4. At 22nd Mar 2013 GitLab version 5.0 was released without Gitolite support [11]

11

2. TOOLS AND TECHNOLOGIES

2.5 Tools for Automatic Pull Request Testing

Existing tools for Continuous Integration which supports GitHub
and automatic testing of Pull Requests are presented in this section.
These tools are Travis CI and BuildHive.

2.5.1 Travis CI

Travis CI is a hosted service for Continuous Integration. It aims to
enable building of projects hosted on GitHub. Travis supports nu-
merous different programming languages like C, Haskell, Java, PHP,
Ruby etc. Travis is free for Continuous Integration of public GitHub
repositories. It also supports building and testing of Pull Requests.

To start using Travis, it is needed to log in with GitHub account
and select project repository. This will activate GitHub hooks on the
repository. These steps are easily done by only a few clicks. Next step
is to add .travis.yml file with Travis build configuration to the
repository. If the file is missing Travis will assume that the project is
in Ruby and will use default configuration.

However Travis has limitations: the build time is limited [17] and
build environment is only Linux (Ubuntu) or Mac (for objective-C).

Travis CI is open source5 but final version was not yet released
and developers do not recommend using it for in-house testing. [18]

2.5.2 BuildHive

BuildHive is a hosted Continuous Integration service built on Jenk-
ins CI. BuildHive is used for Continuous Integration and for testing
Pull Requests on GitHub. For open source projects BuildHive is free
but for private repositories it is paid. BuildHive also provides paid
Jenkins plugin for testing Pull Requests.

When user logs into BuildHive using GitHub account and selects
a repository for building, BuildHive will try to automatically deter-
mine what kind of project (Maven, Ant, Bundler etc.6) it is and then
configure the build accordingly. However the project type can not be
changed and more complex job configuration is not possible.

5. From 26. 3. 2013 to 26. 4. 2013 there were around 13 contributors
6. At 26. 4. 2013 BuildHive supports 7 types of projects [19]

12

Chapter 3

Analysis

Because this work was done in cooperation with JBoss and Red Hat,
requirements were primarily gathered there and existing approaches
to preintegration testing in JBoss were analyzed. Apart from JBoss,
requirements from community were also collected. All the require-
ments are described in first section of this chapter. Existing JBoss in-
ternal tool is described in the next section. GitHub and Jenkins CI are
examined in the remaining sections.

3.1 Requirements

The most important requirement for this work is that it should com-
ply with JBoss workflow. It is needed to analyze existing approaches
for code reviewing and integration testing. An access control is one
of main requirements. It is necessary to ensure that no unauthorized
person could run a potentially dangerous code on corporate ma-
chines. User whitelist is used in existing solution. Changes made
by users on the whitelist can be automatically tested. One of the re-
quirements is to extend this with functionality to test a change with-
out the need of adding the author of the change to the whitelist. In
case where users in the whitelist are members of a GitHub organi-
zation, the maintenance of the whitelist can be a duplicate job to the
maintenance of users in the GitHub organizations so an ability to
whitelist whole GitHub organization is required. Administration of
the whitelist should be easy and adding new user to whitelist should
be possible to do from GitHub. On the other hand if the Continu-
ous Integration system is secured (e.g. tests are running in a sandbox
environment) there is no need for access control.

Next important requirement is to automate the process of test-

13

3. ANALYSIS

ing the changes and to run the tests as swiftly as possible. Besides
other things it is needed to rerun the tests when the changes are up-
dated. Another requirement is to report the results of the test back
to GitHub using the commit status feature. Also the Continuous In-
tegration system can be inaccessible from the internet (e.g. behind
firewall) or access to the Continuous Integration system can be pro-
tected and the result of this work needs to be able to handle both
cases. Related to this is that private Continuous Integration system
instance can have public mirror where results of a build are pub-
lished and URL to this public results should be reported to GitHub
too.

Another requirement is to support different project policies re-
garding the severity of failed tests (e.g. if only failed build is consid-
ered as failure and failed tests are ok or if failed tests are also con-
sidered as failure) and to support automatic rejection of the changes
when the testing of them failed. Also the build needs to get proper
information about the changes like Pull Request number and target
branch for the changes.

It is also required to support enterprise GitHub in addition to git-
hub.com. Last but not least the result should be well documented to
facilitate easy setup and use.

3.2 JBoss status

Jenkins CI is commonly used for testing and Continuous Integration
in JBoss. Some projects like WildFly Application Server have their
own approach to preintegration testing. WildFly source codes are
hosted on GitHub and Pull Requests testing is done on internal Jenk-
ins server called Lightning. Lightning is using Java application called
Pull Player for triggering builds of Pull Requests and results are then
published on public Jenkins server.

3.2.1 Pull Player

Pull Player is a standalone Java application that checks GitHub repos-
itory for Pull Requests and schedule building and testing of these
Pull Requests on Jenkins server. Pull Player is controlled by Pull Re-

14

3. ANALYSIS

quest comments and is sending reports of its progress also as the
Pull Request comment. Pull Player divides GitHub users to three
categories: admins, whitelisted and others. Building of Pull Request
starts only when author of the Pull Request is whitelisted. Whitelisted
users can also restart the build by commenting to the Pull Request
with “retest this please”. Admins are allowed to add authors of Pull
Request to whitelist by commenting with “ok to test”. The Pull Player
process is executed regularly by using cron.

When the Pull Player is executed, it checks for open Pull Requests
on specified GitHub repository. For every Pull Request Pull Player
iterate over the Pull Request’s comments and updates internal infor-
mation about the Pull Request. These information represent state of
the Pull Request – whether building of the Pull Request should be
started, already was or if Pull Player is waiting for user input. Af-
ter all comments are read and if all conditions are met new build in
Jenkins is triggered.

Pull player is communicating with Jenkins via web API. It finds
information about a build by retrieving information about all builds
and searching for the requested one.

Information about completed jobs are stored in files.

3.3 GitHub

GitHub is introduced more closely in this section. At first there is
brief insight into GitHub users and organizations and then Forks and
Pull Requests are described. Then GitHub hooks are presented in the
end GitHub API is described.

GitHub recognizes two types of users. First one is regular user
and organization is the second one. Both of them can have public
and private repositories. Regular users can add collaborators to their
repository. Collaborators are allowed to push directly into the repos-
itory and in case of private repository being a collaborator is the only
option how to get access to it. Organizations can create teams from
regular users. The teams can have Pull, Pull & Push or Pull, Push &
Administrator rights for repository owned by the organization.

15

3. ANALYSIS

3.3.1 Forks and Pull Requests

Figure 3.1: Buttons on GitHub for creating Pull Request and Fork.
[20]

When someone wants to contribute to a GitHub project, he can
use Fork. Forking a repository creates a copy of that repository avail-
able for modification. Changes in the forked repository (e.g. branch
with new functionality or bug fix) can be then proposed to the orig-
inal project for merge. To facilitate this, GitHub provides Pull Re-
quests. Pull Request indicates an intention to merge the head branch
to the chosen base branch. The Pull Request creator must select source
(head) and target (base) repositories and corresponding branches.
After the Pull Request is created owner of the target repository is
notified about a new Pull Request.

Figure 3.2: GitHub dialog for creating of Pull Request. [20]

Opened Pull Requests for a repository can be browsed on Git-
Hub. Pull Requests can be commented, merged and closed. If the
Pull Request can be merged without conflicts it can be done even
from GitHub web interface. If there are conflicts, they can be resolved
and merged with standard git merging process and when pushed to
GitHub the Pull Request is closed automatically.

Content of a Pull Request is stored in GitHub in special refspec:

remotes/origin/pr/*/head

Where * is Pull Request id. If the Pull Request can be automatically
merged the merged state is stored in refspec:

remotes/origin/pr/*/merge

16

3. ANALYSIS

Figure 3.3: GitHub hooks.

In September 2012 GitHub introduced Commit Status API [21].
Commit status can be used for commit evaluation with external tools.
External tool (e.g. Jenkins) can checkout the commit run tests on it or
do an analysis with it and then report the results back to GitHub. Af-
ter that it is easy to see if the evaluation was successful or not in Pull
Request view.

3.3.2 Hooks

GitHub hooks are used for communication with other services to let
them know when an important event happens in a GitHub repos-
itory. GitHub supports many different services1 including general
web service where it is able to send POST request with information
about the event to specified URL address.

Among the events GitHub hooks can handle are issue comment

which fires when somebody create comment on issue or Pull Request
and pull requestwhich fires when Pull Request is opened, closed
or a new commit occurs in it. [23]

1. 112 services at 2013-03-23 [22]

17

3. ANALYSIS

3.3.3 API

GitHub uses REST API for making its functionality available for ex-
ternal tools. GitHub API is now in version 3. API is accessible using
HTTPS protocol on address https://api.github.com/. Pagina-
tion with default 30 results per page is used when accessing list of
entities. [24]

GitHub provides anonymous access to all publicly available data,
however unauthenticated requests are limited to 60 requests per hour.
[25] There exist three ways of authentication in GitHub API: using
basic HTTP authentication with username and password, using OAuth2
access token sent either int request header or as a parameter or using
OAuth2 secret client ID and key.

Part of the API can be used for testing Pull Requests and report-
ing results back to GitHub.

To list all Pull Requests on a given repository, following GET re-
quest can be used:

/repos/:owner/:repo/pulls

Where :owner is username or name of organization and :repo is
name of repository.

To retrieve a specific Pull Request by id, following GET request
can be used:

/repos/:owner/:repo/pulls/:number

Where :number is the id of the Pull Request. To close a Pull Request,
PATCH request is sent to the address with body containing: [26]

{ "state": "closed" }

Comments for given Pull Request are located on address

/repos/:owner/:repo/issues/:number/comments

To list all comments, GET request is used and to create a new com-
ment, POST request is used. Its body contains [27]

{ "body": "a new comment" }

To update a commit status, following POST request can be used:

18

3. ANALYSIS

/repos/:owner/:repo/statuses/:sha

Where :sha is SHA hash of given commit. In the body of this request
there must be field state (which can have one value of pending,
success, error or failure) and optional fields are target url

and description. [28]
To create a new hook, following POST request is used:

/repos/:owner/:repo/hooks

with body containing name of service, array of events on which will
the hook be informing and hook configuration.

3.4 Jenkins CI

Jenkins is “a set of Java classes that model the concepts of a build system”
[29]. In the root there is class Jenkins which contains a tree struc-
ture of Items. Items can represent various things like jobs, projects,
builds and so on. Jenkins is using Stapler for mapping these Items to
URL. Jenkins uses serialization into XML files to store its data.

Jenkins job can represent a particular task or step in build process.
It can compile a sources and run unit tests or build a project and do
related tasks like running integration testsuite, measure code quality,
generate documentation etc. [30]

Jenkins provides a range of classes and interfaces for modeling
every part of a build process like source code management, triggers,
builders, mailers etc. These build parts can be extended and modified
by using plugins. [30]

3.4.1 Stapler

Stapler is a Java library that maps objects to URLs creating an URL
hierarchy according the object model. In application that uses Stapler
root object of the application is mapped to URL /. An object acces-
sible with root.getProject("myProject") is assigned to URL
/project/myProject and method doStuff() on this object will
be assigned to URL /project/myProject/stuff.2

2. More information about Stapler can be found on
http://stapler.kohsuke.org/

19

http://stapler.kohsuke.org/

3. ANALYSIS

3.4.2 Plugins for integration with git

For integration of Jenkins with GitHub, I investigated existing plu-
gins. I am using three: Git Plugin, GitHub Plugin and GitHub API
Plugin.

Git Plugin allows using of git as a build SCM in Jenkins. It pro-
vides functionality for all work related to bare git: repository cloning,
change fetching, branch merging and others. This plugin is essential
for all git-related work.

GitHub Plugin integrates GitHub with Jenkins. It creates hyper-
link in Jenkins Job view to GitHub and can trigger a job when changes
are pushed into repository.

GitHub API Plugin is essential for communicating with GitHub
via REST API.

20

Chapter 4

Implementation

At first GitHub API plugin is analyzed and parts specific for devel-
opment of GitHub Pull Request Builder are described and also work
on improving this GitHub API plugin is presented. Process of devel-
oping Jenkins CI plugin is described after that. Then the architecture
of GitHub Pull Request Builder is explained. Usage of GitHub Pull
Request Builder is covered in the end.

4.1 GitHub API

GitHub API library and plugin by Kohsuke Kawaguchi is Java im-
plementation of GitHub REST API. It provides simple programmatic
interface for communication with GitHub.

There is class GitHub with static methods connect providing
various ways of authentication. When user is authenticated, GitHub
instance can be used for getting data like users, organizations and
repositories. These can be used to operate with GitHub API. GitHub
entities are represented by relevant classes GHUser, GHRepository,
GHPullRequest and others.

4.1.1 Architecture

Usage of the GitHub API library was not perfectly documented and
as mentioned later, the functionality was not perfect either. So, it was
needed to investigate the source codes for better comprehension.

21

4. IMPLEMENTATION

Figure 4.1: GitHub API library.

Class GitHub

This class is the central class of this library. It provides various ways
of authentication using static builder methods.

Method connect returns GitHub instance which is connecting
to GitHub using username and password. This method is not actu-
ally communicating with GitHub when executed, it only stores cre-
dentials for later communication.

Method connectUsingOAuth returns GitHub instance which
connects to enterprise GitHub using access token. This method com-
municates with GitHub when executed because it tries to determine
login name.

There are also other methods for connecting but they were not
important for my work.

When the instance of GitHub class is obtained, it can be used
for accessing some of the parts of GitHub API directly and others
indirectly.

Using the methods getUser and getOrganization can be re-
trieved objects representing GitHub user or organization and using
the method getRepository can be retrieved object representing
repository.

22

4. IMPLEMENTATION

GHRepository

This class has numerous methods to access and modify a repository
in GitHub. There are two important methods For my work.

First getPullRequests retrieves list of all Pull Request given
their state (e.g. open Pull Requests) and second getPullRequest

retrieves single Pull Request by its id.

GHPullRequest and GHIssue

Class GHPullRequest is a representation of a Pull Request in Git-
Hub. Because a Pull Request is basically an issue GHPullRequest is
subclass of GHIssue.

These methods are important for my work: getUpdatedAt is
used for checking if a Pull Request was changed, comment is used
for commenting on a Pull Request, close is used to close a Pull Re-
quest when the build fails, getBase and getHead are used to get
a commit SHA for determining base point for merging and checking
if a new commit occurred in the Pull Request. Method getMergeable

is used for checking if commit can be automatically merged and
method getComments is used for obtaining list of comments.

4.1.2 Improvements

When I started working on my Pull Request Builder plugin, GitHub
API plugin was not up to date with actual GitHub API v3. In the
code there were still references to GitHub API v2, there were issues
with pagination and shallow entities and parts of GitHub API were
not covered.

As I needed proper functionality I have written number of patches
solving these issues. Some of them were accepted by Kohsuke or at
last inspired him to implement this by his own. [31]

My contribution specifically consisted of following.
I have implemented a support for pagination when retrieving is-

sue comments and fixed referencing to author of the comment (see
appendix D.1).

In API v3 GitHub came with shallow entities. For example in Pull
Request entity there is a reference to user who made that Pull Re-

23

4. IMPLEMENTATION

quest. But in previous version of GitHub API there were only two
ways how to do this reference – either by an identificator like user-
name or by using whole user entity. Shallow entities allow usage
of reference which provides more relevant information about user
but without the need to supply also the irrelevant information. So
user shallow entity contains only username, GitHub URL and avatar
URL. When other information about the user are required, the whole
user entity has to be retrieved.

I have implemented one way of handling shallow references by
using a class hierarchy. However Kohsuke though that it would be
easier for client to have only one class for each entity and missing
data would be populated lazily. So he used my patch and updated
it accordingly. [31] I have also removed old GitHub API v2 data
fields and replaced them with new GitHub API v3 data fields (see
appendix D.2).

After my Pull Request Builder plugin was released, I found out
there are other issues in GitHub API plugin. One of them was that au-
thentication header was not sent sometimes when it was needed. Af-
ter discussion with Kohsuke I implemented a solution in which the
authentication header is being sent in every request, not only when
needed (see appendix D.4).

In order to add more functionality to my Pull Request Builder
plugin like generation of access token and support for GitHub hooks,
I needed to implement parts of GitHub API that was not covered yet
in Kohsuke’s GitHub API plugin.

One of them was method for creating OAuth2 access token and
related classes for representing entities returned via the GitHub API
(see appendix D.6).

The other was implementation of class representing data that Git-
Hub send in its hook (see appendix D.7).

And I have also made other smaller changes (see appendix D.3,
D.5 and D.8).

During the time I was working on my plugin and contributing to
Kohsuke’s GitHub API library I earned his trust and he allowed me
to push my changes directly into his repository.

24

4. IMPLEMENTATION

4.2 Jenkins plugin

4.2.1 Plugin API

Jenkins provides extension points for extension by plugins. Exten-
sion points are Java interfaces or abstract classes. In Jenkins core there
is over 100 extension points for plugins to use and plugins can define
their own extension points. By implementing these extension points

Implemented extension points can be annotated with annotation
@Extension. This annotation marks annotated class for automated
localization by Jenkins.

4.2.2 Descriptors and Describable

For storing metadata about a configurable (Describable) instance
Jenkins is using Descriptors. Describable is interface used for
marking that a class is described by Descriptor. Descriptor is
abstract class and each Describable class has a singleton imple-
mentation of Descriptor.

Descriptor is used to store system-wide configuration and to
help to render the configuration form. It is serialized to XML and can
persist any data by storing them in fields.

4.2.3 Extension points for build triggering

Jenkins has a lot of extension points, however only few of them are
needed for triggering a build.

Most important class is Trigger that represents a build trigger.
A cron-like string can be associated to it for periodical execution of
its method run(). Trigger is configurable by job and can store job
specific configuration.

Class Cause class keeps information about a reason why a build
was started. It also renders the cause in the UI and can be used for
providing useful information.

RunListener is Jenkins wide listener that is notified about all
builds that happens in Jenkins. It is notified when build is started,
completed, finalized (everything related to the build is persisted) and
before a build is deleted.

25

4. IMPLEMENTATION

Stapler is mapping UnprotectedRootAction class to Jenkins
root URL according the getUrlName() method. If the URL name is
someName, the instance of UnprotectedRootAction is mapped
to URL like:

http://jenkins.server.com/someName

Difference against RootAction is that UnprotectedRootAction
can be accessed without authentication.

4.2.4 Project and Build

Class Project is representation of a buildable Jenkins job. It holds
all information about the job and can be used schedule a new build
of the job.

Class Build is representation of a build. It holds all information
about the build such as the Cause and results of the build.

4.2.5 Plugin Release

Jenkins supports an easy way of releasing plugins via maven. De-
velopers are encouraged to host their plugins in Jenkins commu-
nity repositories on GitHub. When plugin is ready for release and
changes are pushed to the GitHub repository it can be published by
the following command:

mvn release:prepare release:perform

This will ask developer what version it is and what version will be
next. Then build, tests and packaging will be started and if it all
passes the package will be uploaded to Jenkins download center. Af-
ter some time the new version (or new plugin) will appear in Jenkins
wiki on Plugins page1 and in the Jenkins web console in update Cen-
ter. [32]

1. https://wiki.jenkins-ci.org/display/JENKINS/Plugins

26

https://wiki.jenkins-ci.org/display/JENKINS/Plugins

4. IMPLEMENTATION

4.3 GitHub Pull Request Builder

4.3.1 Cron and Hooks

One of the requirements was to start the builds as soon as possible
after a new change in Pull Requests occurred. When using GitHub
hook, it is possible to react to a change in Pull Request in seconds.
GitHub hooks also provide currently modified data so the amount
of needed communication with GitHub via API is reduced.

Unfortunately GitHub hooks can not be used in cases were Jenk-
ins is not accessible from internet (e.g. hidden behind firewall). Hooks
can be also created only by an owner (or user with administrator
rights) of the repository. Therefore I started with second option and
implemented support for GitHub hooks.

The second option is to use regular polling. Jenkins class Trigger
supports timed running of its method run() by using cron-like string
to configure the timer. When the timer is fired GitHub is polled for
changes. However this approach brings problem how often to con-
figure the polling. On one side, frequent polling can increase load on
the Jenkins server and the GitHub API, on the other side there could
be undesirable delays. With regards to this I added configuration op-
tion to set the frequency for every job separately.

The cron activated polling is used also when the usage of GitHub
hooks is enabled. However this check is only performed once for
Jenkins uptime and is used for fetching changes that occurred during
the time when the hooks were not listened to. Those are for example
cases when new job is created for repository that already contains
opened Pull Requests or when the Jenkins was shut down.

4.3.2 Architecture

Class GhprbTrigger is a connecting point between Jenkins and the
rest of the plugin. It extends Jenkins extension point Trigger which
is Describable so it holds Descriptor with plugin’s global con-
figuration. The Descriptor is also used to store information about
Pull Requests. GhprbTrigger stores job specific configuration, have
method for starting a new build and according to cron configuration
periodically notify class Ghprb.

27

4. IMPLEMENTATION

Figure 4.2: GitHub Pull Request Builder workflow.

Main purpose of Ghprb class is to make communication between
individual parts of the plugin easier. It has builder that is used in
GhprbTrigger for easier creation of the Ghprb class and ensuring
that configuration is ok. The builder also sets all properties of the
Ghprb class so it does not need to have methods that are not used
by other objects. Ghprb provides information methods that are used
for flow control. It also contains method run() that is periodically
called by GhprbTrigger and which determines whether check if
the repository should be initiated.

GhprbRepository is representation of GitHub repository in the
meaning of the plugin. It has list of GhprbPullRequest objects
which represents opened Pull Requests. It can check all opened Pull
Requests in GitHub repository for changes creating new entries in
the list or removing closed one. Class GhprbRepository is also
used for communicating with GitHub repository such as creating
new commit status, adding comments, closing a Pull Request or cre-
ating new hooks. It has also methods that react to incoming hook
messages.

Class GhprbPullRequest represents GitHub Pull Request and
it contains logic that determines whether new build should be started
or not. It remembers state of the Pull Request and when asked to
check if the build should start, it compares new events that occurred
in the meantime from last check. If a new build should start, object
of GhprbBuilds class is notified.

GhprbBuilds class handles starting new builds and notification
about build progress. When a new build is about to start new in-

28

4. IMPLEMENTATION

Figure 4.3: Build triggering and reporting.

stance of GhprbCause is created and handled to GhprbTrigger.
GhprbCause is an extension of Jenkins class Cause and holds infor-
mation about the Pull Request needed for the build. GhprbTrigger
takes data from the GhprbCause and schedules a new build in Jenk-
ins.

When a build is started or completed, GhprbBuildListener is
notified and it checks if the build is started by GhprbBuilds. If so,
GhprbBuilds retrieves the GhprbCause, check status of the build
and reports progress or results to the GitHub.

Class GhprbGitHub is wrapper around GitHub API class GitHub.
It ensures connection to GitHub. Because GitHub builder method
can throw an exception when there is a problem with connection,
this class tries to build the GitHub every time it is asked for it and
when successful it stores it and reuses it in following interactions.
GhprbGitHub also can check whether a user is a member of speci-
fied organization.

Class GhprbRootAction is listening for GitHub hooks. This class
is mapped using Stapler to a web address like:

http://jenkins.server.com/ghprbhook

When HTTP request arrives it is parsed and then GhprbRootAction

29

4. IMPLEMENTATION

determines which job should be notified.

4.4 Usage

Figure 4.4: GitHub Pull Request Builder global Jenkins configuration.

When a new Pull Request is opened in the GitHub project and the
author of the Pull Request is not in whitelist, GitHub Pull Request
Builder will add comment to the Pull Request asking “Can one of
the admins verify this patch?”. One of the admins can comment “ok
to test” to accept this Pull Request for testing, “test this please” for
one time test run and “add to whitelist” to add the author to the
whitelist. If an author of a Pull Request is whitelisted, adding a new
Pull Request or a new commit to an existing pull request will start
a new build automatically and commenting on the Pull Request with
“retest this please” will rerun the build.

Figure 4.5: GitHub Pull Request Builder Jenkins job configuration.

30

4. IMPLEMENTATION

A new build can also be started with a comment: “retest this
please”.

When a building of Pull Request is finished the result is reported
to GitHub and can be seen on the Pull Request page as shown of
Figure 4.6.

Figure 4.6: Report of successful build in GitHub. [20]

31

Chapter 5

Conclusion

Goal of this work was to develop a tool that integrates Jenkins CI
with code review and collaboration tool operating on top of git. I have
developed a plugin for Jenkins CI which automatically builds Git-
Hub Pull Requests named GitHub Pull Request Builder. The plugin
has over 1000 installations[33] and is also used by JBoss.org projects
like Hibernate and GateIn.

The plugin was compared to existing tools for building Pull Re-
quest. GitHub Pull Request Builder and BuildHive was very similar
in time needed to trigger a build and the build started in seconds.
However BuildHive did not use commit status to report the results
but instead added comment to the Pull Request. Also other disad-
vantages of BuildHive are described in section 2.5.2. In some cases
Travis CI build started after almost three hours and building bigger
projects like WildFly Application Server was impossible because of
timeouts.

Git tools for code review were introduced in section 2.4. Jenkins
CI architecture is described in section 3.4 and creation of Jenkins plu-
gin is described in section 4.2. Existing Jenkins plugins for integra-
tion with git and GitHub were identified in section 3.4.2. In section
3.2 current JBoss approaches to integration of development branches
were analyzed.

During the development of the GitHub Pull Request Builder it
was needed to contribute to other open source project – GitHub API
plugin. Communication with the owner of the GitHub API was effi-
cient and all contributions were accepted.

The GitHub Pull Request Builder is released under open source
MIT license on GitHub1 and documentation is available both in the

1. https://github.com/janinko/ghprb

33

https://github.com/janinko/ghprb

5. CONCLUSION

GitHub repository and on Jenkins wiki2.
Further improvements were requested by the community includ-

ing implementation of blacklist and ability to rerun tests when target
branch of Pull Request is updated.

I believe I have completed all the points that were requested in
this thesis and I hope my plugin will continue to be helpful to the
software development community.

2. https://wiki.jenkins-ci.org/display/JENKINS/GitHub+pull+r

equest+builder+plugin

34

https://wiki.jenkins-ci.org/display/JENKINS/GitHub+pull+request+builder+plugin
https://wiki.jenkins-ci.org/display/JENKINS/GitHub+pull+request+builder+plugin

Bibliography

[1] Git - Branching and Merging. 2013. [visited 05/07/2013] avail-
able from: http://git-scm.com/about/branching-and
-merging.

[2] Git - Small and Fast. 2013. [visited 05/07/2013] available from:
http://git-scm.com/about/small-and-fast.

[3] Git - Distributed. 2013. [visited 05/07/2013] available from: h
ttp://git-scm.com/about/distributed.

[4] TORVALDS, Linus. Linus Torvalds on git. May 2007. [visited
05/08/2013] available from: https://git.wiki.kernel.
org/index.php/LinusTalk200705Transcript.

[5] CHACON, Scott. Pro Git. Praha: CZ.NIC, 2009, p. 263. ISBN:
978-80-904248-1-4.

[6] DUVALL, Paul, MATYAS, Steve, GLOVER, Andrew. Contin-
uous Integration - Improving Software Quality and Reducing
Risk. Upper Saddle River, NJ: Addison-Wesley, 2007, p. 283.
ISBN: 03-213-3638-0.

[7] FOWLER, Martin. Continuous Integration. May 2006. [visited
04/17/2013] available from: http://www.martinfowler.
com/articles/continuousIntegration.html.

[8] HUMBLE, Jez, FARLEY, David. Continuous Delivery. first.
Upper Saddle River, NJ: Addison-Wesley, 2010, p. 463. ISBN:
978-032-1601-919.

[9] Gerrit - Background - The history behind Gerrit Code Review.
Nov. 2011. [visited 08/14/2013] available from: https://co
de.google.com/p/gerrit/wiki/Background.

[10] SANHEIM, Rob. GitHub - Three Million Users. Jan. 2013. [vis-
ited 05/08/2013] available from: https://github.com/bl
og/1382-three-million-users.

35

http://git-scm.com/about/branching-and-merging
http://git-scm.com/about/branching-and-merging
http://git-scm.com/about/small-and-fast
http://git-scm.com/about/distributed
http://git-scm.com/about/distributed
https://git.wiki.kernel.org/index.php/LinusTalk200705Transcript
https://git.wiki.kernel.org/index.php/LinusTalk200705Transcript
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
https://code.google.com/p/gerrit/wiki/Background
https://code.google.com/p/gerrit/wiki/Background
https://github.com/blog/1382-three-million-users
https://github.com/blog/1382-three-million-users

BIBLIOGRAPHY

[11] ZAPOROZHETS, Dmitriy. GitLab 5.0 Release, Standing on Its
Own Two Feet. Mar. 2013. [visited 04/08/2013] available from:
http://blog.gitlab.org/gitlab-5-dot-0-has-been

-released/.

[12] ZAPOROZHETS, Dmitriy. GitLab Without Gitolite. Feb. 2013.
[visited 03/15/2013] available from: http://blog.gitlab.
org/gitlab-without-gitolite/.

[13] Jenkins - Gitlab Hook Plugin. Nov. 2012. [visited 08/14/2013]
available from: https://wiki.jenkins-ci.org/displa
y/JENKINS/Gitlab+Hook+Plugin.

[14] Barkeep - the friendly code review system. 2013. [visited 05/08/2013]
available from: http://getbarkeep.org/.

[15] Phabricator. 2013. [visited 05/08/2013] available from: http:
//phabricator.org/.

[16] Review Board - Take the pain out of code review. 2013. [visited
05/08/2013] available from: http://www.reviewboard.o
rg/.

[17] Travis CI - Configuring your Travis CI build with .travis.yml.
Build-Timeouts. 2013. [visited 03/18/2013] available from: ht
tp://about.travis-ci.org/docs/user/build-confi

guration/#Build-Timeouts.

[18] What is Travis CI. We Are Not Done Yet. 2013. [visited 05/08/2013]
available from: https://github.com/travis-ci/travi
s-ci/tree/3cc74a80e4df1b070e9290ae633d44efee3d

255f#we-are-not-done-yet.

[19] BuildHive templates. 2013. [visited 04/26/2013] available from:
https://buildhive.cloudbees.com/template/.

[20] GitHub. 2013. [visited 04/08/2013] available from: https://
github.com/.

[21] SANHEIM, Rob. GitHub - Commit Status API. Sept. 2012. [vis-
ited 03/23/2013] available from: https://github.com/bl
og/1227-commit-status-api.

36

http://blog.gitlab.org/gitlab-5-dot-0-has-been-released/
http://blog.gitlab.org/gitlab-5-dot-0-has-been-released/
http://blog.gitlab.org/gitlab-5-dot-0-has-been-released/
http://blog.gitlab.org/gitlab-without-gitolite/
http://blog.gitlab.org/gitlab-without-gitolite/
https://wiki.jenkins-ci.org/display/JENKINS/Gitlab+Hook+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Gitlab+Hook+Plugin
http://getbarkeep.org/
http://phabricator.org/
http://phabricator.org/
http://www.reviewboard.org/
http://www.reviewboard.org/
http://about.travis-ci.org/docs/user/build-configuration/#Build-Timeouts
http://about.travis-ci.org/docs/user/build-configuration/#Build-Timeouts
http://about.travis-ci.org/docs/user/build-configuration/#Build-Timeouts
https://github.com/travis-ci/travis-ci/tree/3cc74a80e4df1b070e9290ae633d44efee3d255f#we-are-not-done-yet
https://github.com/travis-ci/travis-ci/tree/3cc74a80e4df1b070e9290ae633d44efee3d255f#we-are-not-done-yet
https://github.com/travis-ci/travis-ci/tree/3cc74a80e4df1b070e9290ae633d44efee3d255f#we-are-not-done-yet
https://buildhive.cloudbees.com/template/
https://github.com/
https://github.com/
https://github.com/blog/1227-commit-status-api
https://github.com/blog/1227-commit-status-api

BIBLIOGRAPHY

[22] GitHub services. 2013. [visited 03/23/2013] available from: ht
tps://github.com/github/github-services/tree/4

b52db951868827f1d2b6ddc49481ef966011058/lib/se

rvices.

[23] GitHub API - Repo Hooks API. 2013. [visited 03/23/2013] avail-
able from: http://developer.github.com/v3/repos/h
ooks/.

[24] GitHub API - API v3. Pagination. 2013. [visited 03/23/2013]
available from: http://developer.github.com/v3/#pa
gination.

[25] GitHub API - API v3. Rate Limiting. 2013. [visited 03/23/2013]
available from: http://developer.github.com/v3/#ra
te-limiting.

[26] GitHub API - Pull Request API. 2013. [visited 03/23/2013] avail-
able from: http://developer.github.com/v3/pulls/.

[27] GitHub API - Issue Comments API. 2013. [visited 03/23/2013]
available from: http://developer.github.com/v3/iss
ues/comments/.

[28] GitHub API - Repo Statuses API. 2013. [visited 03/23/2013]
available from: http://developer.github.com/v3/rep
os/statuses/.

[29] Jenkins Wiki - Architecture. Oct. 2012. [visited 05/08/2013] avail-
able from: https://wiki.jenkins-ci.org/display/JE
NKINS/Architecture.

[30] SMART, John Ferguson. Jenkins - the Definitive Guide. first.
Sebastopol, Calif: O’Reilly Media, 2011, p. 380. ISBN: 978-144-
9305-352.

[31] KAWAGUCHI, Kohsuke. Sept. 2012. [visited 05/08/2013] avail-
able from: https://github.com/kohsuke/github-api/
pull/17#issuecomment-8320566.

[32] Jenkins Wiki - Hosting Plugins. May 2013. [visited 05/08/2013]
available from: https://wiki.jenkins-ci.org/displa
y/JENKINS/Hosting+Plugins.

37

https://github.com/github/github-services/tree/4b52db951868827f1d2b6ddc49481ef966011058/lib/services
https://github.com/github/github-services/tree/4b52db951868827f1d2b6ddc49481ef966011058/lib/services
https://github.com/github/github-services/tree/4b52db951868827f1d2b6ddc49481ef966011058/lib/services
https://github.com/github/github-services/tree/4b52db951868827f1d2b6ddc49481ef966011058/lib/services
http://developer.github.com/v3/repos/hooks/
http://developer.github.com/v3/repos/hooks/
http://developer.github.com/v3/#pagination
http://developer.github.com/v3/#pagination
http://developer.github.com/v3/#rate-limiting
http://developer.github.com/v3/#rate-limiting
http://developer.github.com/v3/pulls/
http://developer.github.com/v3/issues/comments/
http://developer.github.com/v3/issues/comments/
http://developer.github.com/v3/repos/statuses/
http://developer.github.com/v3/repos/statuses/
https://wiki.jenkins-ci.org/display/JENKINS/Architecture
https://wiki.jenkins-ci.org/display/JENKINS/Architecture
https://github.com/kohsuke/github-api/pull/17#issuecomment-8320566
https://github.com/kohsuke/github-api/pull/17#issuecomment-8320566
https://wiki.jenkins-ci.org/display/JENKINS/Hosting+Plugins
https://wiki.jenkins-ci.org/display/JENKINS/Hosting+Plugins

BIBLIOGRAPHY

[33] Jenkins - GitHub pull request builder plugin. May 2013. [vis-
ited 08/13/2013] available from: https://wiki.jenkins-
ci.org/display/JENKINS/GitHub+pull+request+bui

lder+plugin.

[34] DRIESSEN, Vincent. A successful Git branching model. Jan.
2010. [visited 05/08/2013] available from: http://nvie.co
m/posts/a-successful-git-branching-model/.

38

https://wiki.jenkins-ci.org/display/JENKINS/GitHub+pull+request+builder+plugin
https://wiki.jenkins-ci.org/display/JENKINS/GitHub+pull+request+builder+plugin
https://wiki.jenkins-ci.org/display/JENKINS/GitHub+pull+request+builder+plugin
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/

Appendix A

Dictionary

Cron – Cron is tool for periodical execution of tasks.
GitHub – GitHub is a hosting service for git repositories.
GitHub hooks – GitHub hooks automatically informs other services
about changes in GitHub repository.
Gitolite – Tool for hosting git repositories.
JBoss – JBoss is a division of Red Hat that specializes in open source
middleware software.
OAuth2 – OAuth2 is an open standard for authorization of client
application.
Pull Request – GitHub way how to propose code changes to repos-
itory.
Red Hat – World’s leader in open source software development and
support.
Refspec – Identifier of git branch.
REST – Representational State Transfer is machine to machine com-
munication protocol commonly used by web based servers.
SCM – Source code manager.
SHA-1 – Secure Hash Algorithm. SHA-1 is hash function which pro-
duces 160 bit hash. In git it is used as checksum for data objects.

39

Appendix B

Archive content

Archive name: automatic-pull-request-integration.zip

Folder ghprb contains source codes of GitHub Pull Request Builder.
Documentation is in file ghprb/README.md.
License is in file ghprb/LICENCE.
Folder github-api contains patches for GitHub API plugin.
ghprb-1.8.hpi is Jenkins plugin package.

41

Appendix C

Git branching model

Figure C.1: Git branching model. [34]

43

Appendix D

List of patches for github-api plugin

D.1 Fixes for github api v3

Location in archive: github-api/16.patch
GitHub Pull Request URL: https://github.com/kohsuke/git
hub-api/pull/16

D.2 Issues pull requests apiv3

Location in archive: github-api/17.patch
GitHub Pull Request URL: https://github.com/kohsuke/git
hub-api/pull/17

D.3 When using lazy population, this is not

deprecated

Location in archive: github-api/18.patch
GitHub Pull Request URL: https://github.com/kohsuke/git
hub-api/pull/18

D.4 PagedIterable dosn’t use authentication

Location in archive: github-api/19.patch
GitHub Pull Request URL: https://github.com/kohsuke/git
hub-api/pull/19

45

https://github.com/kohsuke/github-api/pull/16
https://github.com/kohsuke/github-api/pull/16
https://github.com/kohsuke/github-api/pull/17
https://github.com/kohsuke/github-api/pull/17
https://github.com/kohsuke/github-api/pull/18
https://github.com/kohsuke/github-api/pull/18
https://github.com/kohsuke/github-api/pull/19
https://github.com/kohsuke/github-api/pull/19

D. LIST OF PATCHES FOR GITHUB-API PLUGIN

D.5 Retrieve repository directly

Location in archive: github-api/22.patch
GitHub Pull Request URL: https://github.com/kohsuke/git
hub-api/pull/22

D.6 Implement retrieving of access token

Location in archive: github-api/31.patch
GitHub Pull Request URL: https://github.com/kohsuke/git
hub-api/pull/31

D.7 Implement GHEventPayload.IssueComment

Location in archive: github-api/32.patch
GitHub Pull Request URL: https://github.com/kohsuke/git
hub-api/pull/32

D.8 Add repository to Pull Request payload and wrap

the PR with the repository

Location in archive: github-api/38.patch
GitHub Pull Request URL: https://github.com/kohsuke/git
hub-api/pull/38

46

https://github.com/kohsuke/github-api/pull/22
https://github.com/kohsuke/github-api/pull/22
https://github.com/kohsuke/github-api/pull/31
https://github.com/kohsuke/github-api/pull/31
https://github.com/kohsuke/github-api/pull/32
https://github.com/kohsuke/github-api/pull/32
https://github.com/kohsuke/github-api/pull/38
https://github.com/kohsuke/github-api/pull/38

